Hive SQL编译成MapReduce任务的过程

2024-02-13 01:12

本文主要是介绍Hive SQL编译成MapReduce任务的过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、 Hive 底层执行架构

1.1 Hive底层架构

1 )用户接口: Client
      CLI command-line interface )、 JDBC/ODBC(jdbc 访问 hive) WEBUI (浏览器访问 hive
2 )元数据: Metastore
      元数据包括:表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、
表的类型(是否是外部表)、表的数据所在目录等;hive元数据默认存储在自带的derby数据库中,生产环境建议将metastore存储在 mysql
3 Hadoop
使用 HDFS 进行存储,使用 MapReduce 进行计算。
4 )驱动器: Driver
5 )解析器( SQL Parser
将SQL字符串转换成抽象语法树AST,这一步一般用第三方工具库完成,例如Antlr; 对AST进行语法分析,例如: 表是否存在、字段是否存在、 SQL 语义是否有误。
6 )编译器( Physical Plan
      将抽象语法树AST 编译生成逻辑执行计划。
7 )优化器( Query Optimizer
      对逻辑执行计划进行优化
8 )执行器( Execution
      执行器:即执行引擎,它可以把逻辑执行计划转换成可以运行的物理执行计划。对于 Hive 来说,底层执行引擎可以是 MR或Spark

1.2 Hive与Hadoop交互过程

上图的基本流程是:

  • 步骤1:Client 客户端调用 Driver的接口;
  • 步骤2:Driver驱动器为查询创建会话句柄,并将查询发送到 Compiler(编译器组件)生成执行计划;
  • 步骤3和4:编译器从元数据存储库中获取本次查询所需要的元数据;
  • 步骤5:编译器生成各个阶段Stage的执行计划,如果是一个MR任务,该执行计划分为两部分:Map Operator Tree(map端的执行计划树)和Reduce Operator Tree(reduce端的执行计划树),再将生成的计划发给Driver;
  • 步骤6:Driver将执行计划发给执行引擎Execution Engine;

步骤6.1 / 6.2  /6.3 /6.4:执行引擎将这些阶段Stage的具体执行内容提交给对应的组件。在每个 Task(mapper/reducer) 任务中,从HDFS文件中读取与表相关的数据,并通过算子树依次传递。最终的数据集借助序列化器写入到临时的HDFS文件中。

  • 步骤7、8:临时HDFS文件的内容由执行引擎读取后,通过Driver驱动器发送给Client 客户端

二、Hive SQL 编译成MR任务的流程

2.1 HQL转换为MR源码整体流程介绍

2.2 程序入口—CliDriver

我们执行一个 HQL 语句通常有以下几种方式:
1 $HIVE_HOME/bin/hive 进入客户端,然后执行 HQL
2 $HIVE_HOME/bin/hive -e “hql”
3 $HIVE_HOME/bin/hive -fhive.sql
4 )先开启 hivesever2 服务端,然后通过 JDBC 方式连接远程提交 HQL
可以知道我们执行 HQL 主要依赖于 $HIVE_HOME/bin/hive  和  $HIVE_HOME/bin/
而在这两个脚本中,最终启动的 JAVA 程序的主类为
org.apache.hadoop.hive.cli.CliDriver ,所以其实 Hive程序的入口就是“CliDriver ”这个类。

2.3 HQL编译成MR任务的详细过程—Driver

2.3.1 将HQL语句转换成AST抽象语法树

  • 词法、语法解析:  Antlr 定义 SQL 的语法规则,完成 SQL 词法,语法解析,将 SQL 转化为抽象语法树 AST Tree;

 例如:AST如下图:

2.3.2 将AST转换成TaskTree

  • 语义解析:  遍历 AST Tree,抽象出一条SQL最基本组成单元 QueryBlock(查询块),该块包括三个部分:输入源,计算过程,输出。简单而言一个QueryBlock就是一个子查询。

  • 生成逻辑执行计划:  遍历 QueryBlock,翻译为执行操作树 OperatorTree(操作树,也就是逻辑执行计划);Hive最终生成的MapReduce任务,Map阶段和Reduce阶段均由OperatorTree组成。基本的操作符包括:

  1. TableScanOperator

  2. SelectOperator

  3. FilterOperator

  4. JoinOperator

  5. GroupByOperator

  6. ReduceSinkOperator

      Operator操作算子在Map Reduce阶段之间的数据传递是一个流式的过程。每一个Operator对一行数据操作之后将数据传递给childOperator计算。

    由于Join/GroupBy需要在Reduce阶段完成,所以在生成相应操作的Operator之前都会先生成一个ReduceSinkOperator,将字段组合并序列化为Reduce KeyReduce /value, Partition Key。

  • 优化逻辑执行计划: 逻辑优化器对OperatorTree(操作树)进行逻辑优化。例如合并不必要的ReduceSinkOperator,减少数据传输及 shuffle 数据量;

    Hive中的逻辑查询优化可以大致分为以下几类:

  1. 投影修剪

  2. 谓词下推

  3. 多路 Join

  • 生成物理执行计划:  遍历 OperatorTree,转换成MR任务。生成物理执行计划即是将逻辑执行计划生成的OperatorTree转化为MapReduce Job的过程。

      HQL编译成MapReduce具体原理:

      以下面这个SQL为例,阐述join的实现过程:

select u.name, o.orderid 
from order o 
join user u on o.uid = u.uid;

 执行流程图:

  • 优化物理执行计划:物理优化器对进行TaskTree进行物理优化;

Hive中的物理优化可以大致分为以下几类:

  1. 分区修剪(Partition Pruning)

  2. 基于分区和桶的扫描修剪(Scan pruning)

  3. 在某些情况下,在 mapper端进行 Group By分组的预聚合

  4. 在 mapper端执行Join(map join)

  5. 如果是简单的select查询,可以设置为本地执行,避免使用MapReduce作业

    经过2.3.1 及2.3.2 这六个阶段,HQL就被解析映射成了集群上的 MR任务。

2.3.3 提交任务并执行

  • 获取MR临时工作目录
  • 定义Partitioner
  • 定义Mapper和Reducer
  • 实例化Job任务
  • 提交Job任务并执行

这篇关于Hive SQL编译成MapReduce任务的过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/704092

相关文章

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

SpringBoot 整合 Grizzly的过程

《SpringBoot整合Grizzly的过程》Grizzly是一个高性能的、异步的、非阻塞的HTTP服务器框架,它可以与SpringBoot一起提供比传统的Tomcat或Jet... 目录为什么选择 Grizzly?Spring Boot + Grizzly 整合的优势添加依赖自定义 Grizzly 作为

Python Invoke自动化任务库的使用

《PythonInvoke自动化任务库的使用》Invoke是一个强大的Python库,用于编写自动化脚本,本文就来介绍一下PythonInvoke自动化任务库的使用,具有一定的参考价值,感兴趣的可以... 目录什么是 Invoke?如何安装 Invoke?Invoke 基础1. 运行测试2. 构建文档3.

Mysql DATETIME 毫秒坑的解决

《MysqlDATETIME毫秒坑的解决》本文主要介绍了MysqlDATETIME毫秒坑的解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 今天写代码突发一个诡异的 bug,代码逻辑大概如下。1. 新增退款单记录boolean save = s

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

解决Cron定时任务中Pytest脚本无法发送邮件的问题

《解决Cron定时任务中Pytest脚本无法发送邮件的问题》文章探讨解决在Cron定时任务中运行Pytest脚本时邮件发送失败的问题,先优化环境变量,再检查Pytest邮件配置,接着配置文件确保SMT... 目录引言1. 环境变量优化:确保Cron任务可以正确执行解决方案:1.1. 创建一个脚本1.2. 修

MYSQL行列转置方式

《MYSQL行列转置方式》本文介绍了如何使用MySQL和Navicat进行列转行操作,首先,创建了一个名为`grade`的表,并插入多条数据,然后,通过修改查询SQL语句,使用`CASE`和`IF`函... 目录mysql行列转置开始列转行之前的准备下面开始步入正题总结MYSQL行列转置环境准备:mysq