基于嵌入式操作系统VxWorks的多任务并发程序设计――中断与任务

本文主要是介绍基于嵌入式操作系统VxWorks的多任务并发程序设计――中断与任务,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

中断处理是整个运行系统中优先级最高的代码,可以抢占任何任务级代码运行。中断机制是多任务环境运行的基础,是系统实时性的保证。几乎所有的实时多任务操作系统都需要一个周期性系统时钟中断的支持,用以完成时间片调度和延时处理。VxWorks 提供tickAnnounce(),由系统时钟中断调用,周期性地触发内核。

  为了快速响应中断,VxWorks的中断服务程序(ISR)运行在特定的空间。不同于一般的任务,中断服务程序没有任务上下文,不包含任务控制块,所有的中断服务程序使用同一中断堆栈,它在系统启动时就已根据具体的配置参数进行了分配和初始化。在ISR中能使用的函数类型与在一般任务中能使用的有些不同,主要体现在:

  (1ISR中不能调用可能导致blocking的函数,例如:

  (a)不能以semTake获取信号量,因如果该信号量不可利用,内核会试图让调用者切换到blocking态;

  (b)mallocfree可能导致blocking,因此也不能使用;

  (c)应避免进行VxWorks I/O系统操作(除管道外);

  (d)应避免在ISR中进行浮点操作。

  (2)在ISR中应以logMsg打印消息,避免使用printf

  (3)理想的ISR仅仅调用semGive等函数,其它的事情交给semTake这个信号量的任务去做。一个ISR通常作为通信或同步的发起者,它采用发送信号量或向消息队列发送一个消息的方式触发相关任务至就绪态。ISR几乎不能作为信息的接收者,它不可以等待接收消息或信号量。

  11.中断服务程序

  VxWorks中与中断相关的重要API函数或宏有:

  (1intConnect():中断连接,将中断向量与ISR入口函数绑定

SYNOPSIS STATUS intConnect
   (
    VOIDFUNCPTR * vector,/* interrupt vector to attach to  */
    VOIDFUNCPTR  routine, /* routine to be called     */
    int    parameter /* parameter to be passed to routine */
  );

intConnect只是调用了下文将要介绍的intHandlerCreate()intVecSet()函数。

  (2INUM_TO_IVEC(intNum):将中断号转化为中断向量的宏。与INUM_TO_IVEC对应的还有一个IVEC_TO_INUM(intVec),实现相反的过程。INUM_TO_IVECIVEC_TO_INUM的具体定义与特定的BSP有关,例如:

/* macros to convert interrupt vectors <-> interrupt numbers */
#define IVEC_TO_INUM(intVec)
  ((int) (intVec))
#define INUM_TO_IVEC(intNum)
  ((VOIDFUNCPTR *) (intNum))

  结合12可知一般挂接一个中断服务程序的调用为:

intConnect(INUM_TO_IVEC(INTERRUPT_LEVEL),(VOIDFUNCPTR)interruptHandler,i);

  例1:中断服务程序

/* includes */
#include "vxWorks.h"
#include "intLib.h"
#include "taskLib.h"
#include "sysLib.h"
#include "logLib.h"
  
/* function prototypes */
void interruptHandler(int);
void interruptCatcher(void);
  
/* globals */
#define INTERRUPT_NUM 2
#define INTERRUPT_LEVEL 65
#define ITER1 40
#define LONG_TIME 1000000
#define PRIORITY 100
#define ONE_SECOND 100
  
void interruptGenerator(void) /* task to generate the SIGINT signal */
{
 int i, j, taskId, priority;
 STATUS taskAlive;
  
 if ((taskId = taskSpawn("interruptCatcher", PRIORITY, 0x100, 20000, (FUNCPTR)
  
  interruptCatcher, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)) == ERROR)
  
  logMsg("taskSpawn interruptCatcher failedn", 0, 0, 0, 0, 0, 0);
  
 for (i = 0; i < ITER1; i++)
  
 {
  
  taskDelay(ONE_SECOND); /* suspend interruptGenerator for one second */
  
  /* check to see if interruptCatcher task is alive! */
  
  if ((taskAlive = taskIdVerify(taskId)) == OK)
  
  {
  
   logMsg("++++++++++++++++++++++++++Interrupt generatedn", 0, 0, 0, 0, 0,
  
    0);
  
   /* generate hardware interrupt 2 */
  
   if ((sysBusIntGen(INTERRUPT_NUM, INTERRUPT_LEVEL)) == ERROR)
  
    logMsg("Interrupt not generatedn", 0, 0, 0, 0, 0, 0);
  
  }
  
  else
  
   /* interruptCatcher is dead */
  
   break;
  
 }
  
 logMsg("n***************interruptGenerator Exited***************nnnn", 0,
  
  0, 0, 0, 0, 0);
  
}
  
void interruptCatcher(void) /* task to handle the interrupt */
  
{
  
 int i, j;
  
 STATUS connected;
  
 /* connect the interrupt vector, INTERRUPT_LEVEL, to a specific interrupt
  
 handler routine ,interruptHandler, and pass an argument, i */
  
 if ((connected = intConnect(INUM_TO_IVEC(INTERRUPT_LEVEL), (VOIDFUNCPTR)
  
  interruptHandler, i)) == ERROR)
  
  logMsg("intConnect failedn", 0, 0, 0, 0, 0, 0);
  
 for (i = 0; i < ITER1; i++)
  
 {
  
  for (j = 0; j < LONG_TIME; j++)
  
   ;
  
  logMsg("Normal processing in interruptCatchern", 0, 0, 0, 0, 0, 0);
  
 }
  
 logMsg("n+++++++++++++++interruptCatcher Exited+++++++++++++++n", 0, 0, 0,
  
  0, 0, 0);
  
}
  
void interruptHandler(int arg) /* signal handler code */
  
{
  
 int i;
  
 logMsg("-------------------------------interrupt caughtn", 0, 0, 0, 0, 0, 0);
  
 for (i = 0; i < 5; i++)
  
  logMsg("interrupt processingn", 0, 0, 0, 0, 0, 0);
  
}

 程序中的sysBusIntGen()调用将产生一个bus中断,这个函数与特定的BSP密切相关,其原型为:

  STATUS sysBusIntGen
  
  (
  
  int intLevel, /* bus interrupt level to generate */
  
  int vector /* interrupt vector to generate (0-255) */
  
  );

  为了在同一中断源的几种中断服务程序中进行切换,我们应使用如下方式:

vector = INUM_TO_IVEC(some_int_vec_num);
oldfunc = intVecGet (vector);
newfunc = intHandlerCreate (routine, parameter);
intVecSet (vector, newfunc);
...
intVecSet (vector, oldfunc); /* use original routine */
...
intVecSet (vector, newfunc); /* reconnect new routine */

  其中,intHandlerCreate函数的原型为:

FUNCPTR intHandlerCreate
(
FUNCPTR routine, /* routine to be called */
int parameter /* parameter to be passed to routine */
);

  它被用于创建一个中断服务程序,在此之后,通过intVecSet()函数我们就可以将intHandlerCreate()创建的结果与中断向量绑定,intVecSet()函数的原型为:

void intVecSet
(
FUNCPTR * vector, /* vector offset */
FUNCPTR function /* address to place in vector */
);

  12.中断控制12.1中断执行过程

  硬件中断发生时,代码运行的上下文会发生切换,在进入中断处理前,需要保存当前运行的上下文。对于一些无RTOS的单片机系统,这些工作由硬件和编译器共同完成,向量表在编译完成后就填充完成,再写入存储器中,系统运行时不能修改向量表来重新绑定中断入口函数。在VxWorks系统中,除了需要保存通常的寄存器环境外,还需要完成栈切换等;另外还要求中断入口运行时绑定、平台移植性、中断嵌套等,所以VxWorks本身也参与中断封装的管理。VxWorks进行中断封装的伪代码如下:

* 00 e8 kk kk kk kk call _intEnt * 通知内核
* 05
 50  pushl %eax * 保存寄存器
* 06
 52  pushl %edx
* 07
 51  pushl %ecx
* 08
 68 pp pp pp pp pushl $_parameterBoi * push BOI param
* 13
 e8 rr rr rr rr call _routineBoi * call BOI routine
* 18
 68 pp pp pp pp pushl $_parameter * 传中断入口参数
* 23 e8 rr rr rr rr call
 _routine  * 调用中断处理C函数
* 28
 68 pp pp pp pp pushl $_parameterEoi * push EOI param
* 33
 e8 rr rr rr rr call _routineEoi * call EOI routine
* 38
 83 c4 0c addl ?, %esp  * pop param
* 41
 59  popl %ecx * 恢复寄存器
* 42
 5a  popl %edx
* 43
 58  popl %eax
* 44
 e9 kk kk kk kk jmp _intExit * 通过内核退出

  12.2中断使能/禁止

  VxWorks提供两个重要API

  (1intLock():使中断禁止

  (2intUnlock():开中断

  可以用intLock/intUnlock提供最高级别的互斥机制以保护临界区域不被打断,例如:

oldlevel = intLock();
/*
XXX寄存器 */
XXX_REG_WRITE(pChan, XXX_UBRDIV, XXX_CNT0_115200 |
 XXX_CNT1_VAL); 
intUnlock(oldlevel);

  用intLock()禁止中断后,当前执行的任务将一直继续,中断处理和任务调度得不到执行,直到该任务主动调用intUnLock解锁中断为止。对于intLockunLock的使用,我们要注意如下几点:

  (1)不要在中断禁止期间调用vxWorks系统函数,否则有可能意外使能中断,违反临界代码的设计意图。另外,intLock也不能屏蔽调度,如果在中断禁止代码区使用系统调用,就可能出现任务调度,其他任务的运行可能会解锁中断;

  (2)中断禁止对系统的实时性有很大的影响,在解决执行代码和中断处理互斥问题才可使用,并且应使中断禁止时间尽可能的短。对于任务间的互斥问题,可以使用taskLock()taskUnLock()来解决;

  (3)有些CPU中断是分级,我们可以用intLockLevelSet()intLockLevelGet()来操作中断闭锁的级别。缺省情况下,taskLock禁止所有等级的中断。

  至此,我们可以对互斥问题进行一个系统的总结,主要有如下几种方法:

  (1intLock禁止中断:解决任务和ISR之间的互斥问题;

 int lock = intLock();
 //. . critical region that cannot be interrupted
 intUnlock(lock);

  (2taskLock禁止优先级抢占调度:当当前任务正在运行时,除了中断服务程序外,高优先级的任务也不允许抢占CPU

 taskLock();
 //. . critical region that cannot be interrupted .
 taskUnlock();

  (3)二进制信号量或互斥信号量。

semTake (semMutex, WAIT_FOREVER);
 //. . critical region, only accessible by a single task at a time .
semGive (semMutex);

  总的来说,在实时系统中采取禁止中断的方法会影响系统对外部中断及时响应和处理的能力;而禁止优先级抢占调度方法阻止了高优先级的任务抢先运行,在实时系统中也是不适合的。因此,信号量无疑是解决互斥问题的最好方法。

这篇关于基于嵌入式操作系统VxWorks的多任务并发程序设计――中断与任务的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/702618

相关文章

Python Invoke自动化任务库的使用

《PythonInvoke自动化任务库的使用》Invoke是一个强大的Python库,用于编写自动化脚本,本文就来介绍一下PythonInvoke自动化任务库的使用,具有一定的参考价值,感兴趣的可以... 目录什么是 Invoke?如何安装 Invoke?Invoke 基础1. 运行测试2. 构建文档3.

Python中的可视化设计与UI界面实现

《Python中的可视化设计与UI界面实现》本文介绍了如何使用Python创建用户界面(UI),包括使用Tkinter、PyQt、Kivy等库进行基本窗口、动态图表和动画效果的实现,通过示例代码,展示... 目录从像素到界面:python带你玩转UI设计示例:使用Tkinter创建一个简单的窗口绘图魔法:用

解决Cron定时任务中Pytest脚本无法发送邮件的问题

《解决Cron定时任务中Pytest脚本无法发送邮件的问题》文章探讨解决在Cron定时任务中运行Pytest脚本时邮件发送失败的问题,先优化环境变量,再检查Pytest邮件配置,接着配置文件确保SMT... 目录引言1. 环境变量优化:确保Cron任务可以正确执行解决方案:1.1. 创建一个脚本1.2. 修

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

什么是cron? Linux系统下Cron定时任务使用指南

《什么是cron?Linux系统下Cron定时任务使用指南》在日常的Linux系统管理和维护中,定时执行任务是非常常见的需求,你可能需要每天执行备份任务、清理系统日志或运行特定的脚本,而不想每天... 在管理 linux 服务器的过程中,总有一些任务需要我们定期或重复执行。就比如备份任务,通常会选在服务器资

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

怎么让1台电脑共享给7人同时流畅设计

在当今的创意设计与数字内容生产领域,图形工作站以其强大的计算能力、专业的图形处理能力和稳定的系统性能,成为了众多设计师、动画师、视频编辑师等创意工作者的必备工具。 设计团队面临资源有限,比如只有一台高性能电脑时,如何高效地让七人同时流畅地进行设计工作,便成为了一个亟待解决的问题。 一、硬件升级与配置 1.高性能处理器(CPU):选择多核、高线程的处理器,例如Intel的至强系列或AMD的Ry

基于51单片机的自动转向修复系统的设计与实现

文章目录 前言资料获取设计介绍功能介绍设计清单具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机