linux中probe函数中传递的参数来源(上)

2024-02-12 11:32

本文主要是介绍linux中probe函数中传递的参数来源(上),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 linux中probe函数传递参数的寻找(上)

        上一篇中,我们追踪了probe函数在何时调用,知道了满足什么条件会调用probe函数,但probe函数中传递的参数我们并不知道在何时定义,到底是谁定义的,反正不是我们在驱动中定义的(当然,驱动中也不会定义设备的详细信息),但也不是在我们设备信息定义时的结构体。这就相当于武林绝学中只打通了任脉,而督脉还没打通,要想成为武林高手还差一步,本文就致力于打通我们设备驱动probe函数的任督二脉,做到正向逆向全顺畅,当任督二脉全都打通后,。。。,就可以独步武林、指点江山啦,再然后按照武林高手成名后既定的流程,该寂寞地隐去了(好像又再做白日梦了),当然了Linux中值得我们要学的多着呢,除了编写内核的那帮家伙们偶尔会寂寞下外,我们还是没有多少时间留给我们寂寞的(^_^)。

         虽然不知道probe函数的参数怎么来的,但没吃过猪肉,还是见过猪跑的,有点关系就能找到出路。经常听说:先注册设备时,内核会将设备信息挂到设备链上,然后等待命中注定的有缘的设备驱动mm or gg。so,我们可以猜想:应该是设备注册的时候,内核将设备信息挂到上面去的,按照这个猜想,我们应该先从设备注册入手,但是这么多函数到底朝哪个方向努力呀?所以,先从传递的参数入手,查看下,等走不通了在去从设备注册入手,起码有了努力的方向了。

调用probe函数的是:static int really_probe(struct device *dev, struct device_driver*drv),里面有调用ret = dev->bus->probe(dev)和ret =drv->probe(dev)。函数如下:

static int really_probe(struct device *dev, struct device_driver *drv)

{

         intret = 0;

......

 

         if (dev->bus->probe) {

                   ret = dev->bus->probe(dev);

                   if (ret)

                            goto probe_failed;

         } else if (drv->probe) {

                   ret = drv->probe(dev);

                   if (ret)

                            goto probe_failed;

         }

 

......

         returnret;

}

这里的参数dev是上一个函数传递进来的,上一个函数为:int driver_probe_device(struct device_driver *drv, struct device*dev)

int driver_probe_device(structdevice_driver *drv, struct device *dev)

{

         intret = 0;

  ......

         ret = really_probe(dev, drv);


...... 

         returnret;

}

这里的dev又是上一个函数传递进来的,上一个函数为:static int __driver_attach(struct device *dev, void *data)

static int __driver_attach(struct device *dev, void *data)

{

         structdevice_driver *drv = data;

  ......

         device_lock(dev);

         if(!dev->driver)

                   driver_probe_device(drv, dev);

         device_unlock(dev);

        ......

         return0;

}

这里的dev又是上一个函数传递进来的,调用__driver_attach的函数为:int driver_attach(struct device_driver *drv),但本函数没有给__driver_attach传递参数。

int driver_attach(structdevice_driver *drv)

{

         returnbus_for_each_dev(drv->bus, NULL, drv,__driver_attach);

}

         这里面调用了__driver_attach,对应error =fn(dev, data)。第一个参数dev为while ((dev = next_device(&i)) && !error)产生。即dev有i间接产生。

int bus_for_each_dev(struct bus_type *bus, struct device *start,

                        void *data, int (*fn)(struct device *,void *))

{

         structklist_iter i;

         structdevice *dev;

         interror = 0;

....

 

         klist_iter_init_node(&bus->p->klist_devices, &i,

                                 (start ? &start->p->knode_bus :NULL));

         while ((dev = next_device(&i)) && !error)

                   error = fn(dev, data);

         klist_iter_exit(&i);

         returnerror;

}

之所以是next_device(&i),因为第一个节点为头节点,需要从下一个开始,先看看klist_iter_init_node(&bus->p->klist_devices, &i, (start ? &start->p->knode_bus : NULL))对i干了什么?因为start为NULL,故传递的第三个参数n为NULL。

void klist_iter_init_node(struct klist *k,struct klist_iter *i,

                              struct klist_node *n)

{

         i->i_klist= k;

         i->i_cur= n;

         if(n)

                   kref_get(&n->n_ref);

}

         看来ta没干什么,就是赋了两个值。然后再看最重要的next_device(&i)

static struct device *next_device(struct klist_iter *i)

{

         structklist_node *n = klist_next(i);

         structdevice *dev = NULL;

         structdevice_private *p;

 

         if(n) {

                   p = to_device_private_parent(n);

                   dev = p->device;

         }

         returndev;

}

#define to_device_private_parent(obj)  \

         container_of(obj,struct device_private, knode_parent)

         看到dev由p->device赋值,p为struct device_private,n = i->i_cur为structklist_node 型(后面分析)。为了看懂这个函数,需要补充N多知识,先上几个struct:

struct klist_iter {

         structklist                 *i_klist;

         structklist_node      *i_cur;

};

 

struct klist {

         spinlock_t                  k_lock;

         structlist_head        k_list;

         void                    (*get)(struct klist_node *);

         void                    (*put)(struct klist_node *);

} __attribute__ ((aligned (sizeof(void*))));

 

struct klist_node {

         void                    *n_klist;   /* never access directly */

         structlist_head        n_node;

         structkref                  n_ref;

};

 

struct kref {

         atomic_trefcount;

};

 

         其中的klist_iter_init_node(&bus->p->klist_devices, &i,(start ?&start->p->knode_bus : NULL))作用是定义个klist_iter指向此klist,以便以后直接使用,如图:

 

         再把关键的函数拷到此处,以遍分析:

         while ((dev = next_device(&i)) && !error)

                   error = fn(dev, data);

static struct device *next_device(struct klist_iter *i)

{

         structklist_node *n = klist_next(i);

         structdevice *dev = NULL;

         structdevice_private *p;

 

         if(n) {

                   p = to_device_private_parent(n);

                   dev = p->device;

         }

         returndev;

}

 

/**

 *klist_next - Ante up next node in list.

 *@i: Iterator structure.

 *

 *First grab list lock. Decrement the reference count of the previous

 *node, if there was one. Grab the next node, increment its reference

 *count, drop the lock, and return that next node.

 */

struct klist_node *klist_next(struct klist_iter *i)

{

         void(*put)(struct klist_node *) = i->i_klist->put;

         structklist_node *last = i->i_cur;//NULL

         structklist_node *next;

 

         spin_lock(&i->i_klist->k_lock);

 

         if(last) {

                   next= to_klist_node(last->n_node.next);

                   if(!klist_dec_and_del(last))

                            put= NULL;

         }else

                   next= to_klist_node(i->i_klist->k_list.next);

 

         i->i_cur= NULL;

         while(next != to_klist_node(&i->i_klist->k_list)){

                   if(likely(!knode_dead(next))) {

                            kref_get(&next->n_ref);

                            i->i_cur = next;

                            break;

                   }

                   next= to_klist_node(next->n_node.next);

         }

 

         spin_unlock(&i->i_klist->k_lock);

 

         if(put && last)

                   put(last);

         returni->i_cur;

}

         这里last =i->i_cur;为NULL,然后执行next = to_klist_node(i->i_klist->k_list.next);从这个函数来看,就是取出了包含i->i_klist->k_list.next的n_node指针。不过next所指的和n_node地址偏差一个head指针(list_head包括head和next俩指针)。while循环是从第一个目标to_klist_node(i->i_klist->k_list.next)循环,当再次循环到头节点to_klist_node(&i->i_klist->k_list)时截止(这是个循环链表,总会再次循环回来的)。还一个结束的条件,当循环到knode_dead(next)为真时break,不过,likely说明了next通常不会是dead的,(struct klist_node的第一个成员最后一位做标志dead位,网上还说有指针的作用,我觉得好像做了标志位了就不能做指向头节点的指针了,不过void *n_klist名字起得确实很有迷惑性)。

static struct klist_node*to_klist_node(struct list_head *n)

{

         returncontainer_of(n, struct klist_node, n_node);

}

         还一个i的来源,ta是一切的来源。在klist_iter_init_node(&bus->p->klist_devices,&i,                               (start ? &start->p->knode_bus :NULL))中,       i->i_klist = &bus->p->klist_devices;i->i_cur = NULL;

 

         Klist_iter找到合适的即停止搜索,找到此处的device_private的device,此结构即为传入probe函数的参数。device源于i(i只是暂时用于查找定义的一个临时变量),而i源于bus,bus源于drv->bus,drv源于sdrv->driver,sdrv即为mx25lx_driver,不过mx25lx_driver->driver中的bus,只给赋了一个值,而在后来调用标准的spi函数时,又重新对bus赋了值spi_bus_type,spi_bus_type是spi.c中的struct bus_type定义的全局变量。

 

这篇关于linux中probe函数中传递的参数来源(上)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/702501

相关文章

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Python如何使用seleniumwire接管Chrome查看控制台中参数

《Python如何使用seleniumwire接管Chrome查看控制台中参数》文章介绍了如何使用Python的seleniumwire库来接管Chrome浏览器,并通过控制台查看接口参数,本文给大家... 1、cmd打开控制台,启动谷歌并制定端口号,找不到文件的加环境变量chrome.exe --rem

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

Linux Mint Xia 22.1重磅发布: 重要更新一览

《LinuxMintXia22.1重磅发布:重要更新一览》Beta版LinuxMint“Xia”22.1发布,新版本基于Ubuntu24.04,内核版本为Linux6.8,这... linux Mint 22.1「Xia」正式发布啦!这次更新带来了诸多优化和改进,进一步巩固了 Mint 在 Linux 桌面

LinuxMint怎么安装? Linux Mint22下载安装图文教程

《LinuxMint怎么安装?LinuxMint22下载安装图文教程》LinuxMint22发布以后,有很多新功能,很多朋友想要下载并安装,该怎么操作呢?下面我们就来看看详细安装指南... linux Mint 是一款基于 Ubuntu 的流行发行版,凭借其现代、精致、易于使用的特性,深受小伙伴们所喜爱。对

什么是 Linux Mint? 适合初学者体验的桌面操作系统

《什么是LinuxMint?适合初学者体验的桌面操作系统》今天带你全面了解LinuxMint,包括它的历史、功能、版本以及独特亮点,话不多说,马上开始吧... linux Mint 是一款基于 Ubuntu 和 Debian 的知名发行版,它的用户体验非常友好,深受广大 Linux 爱好者和日常用户的青睐,

Linux(Centos7)安装Mysql/Redis/MinIO方式

《Linux(Centos7)安装Mysql/Redis/MinIO方式》文章总结:介绍了如何安装MySQL和Redis,以及如何配置它们为开机自启,还详细讲解了如何安装MinIO,包括配置Syste... 目录安装mysql安装Redis安装MinIO总结安装Mysql安装Redis搜索Red

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或