两种不同风格的lxml标注文件的解析:pet和Lara_UrbanSeq1_Traffic Light

2024-02-12 04:32

本文主要是介绍两种不同风格的lxml标注文件的解析:pet和Lara_UrbanSeq1_Traffic Light,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. pet数据集标注样式

以Abyssinian_12.xml为例,文件内容如下:

<annotation><folder>OXIIIT</folder><filename>Abyssinian_12.jpg</filename><source><database>OXFORD-IIIT Pet Dataset</database><annotation>OXIIIT</annotation><image>flickr</image></source><size><width>335</width><height>500</height><depth>3</depth></size><segmented>0</segmented><object><name>cat</name><pose>Frontal</pose><truncated>0</truncated><occluded>0</occluded><bndbox><xmin>94</xmin><ymin>83</ymin><xmax>211</xmax><ymax>190</ymax></bndbox><difficult>0</difficult></object>
</annotation>

分析可知,其节点全部为tag:text形式,每个tag不包含attrib。因此,参照Object Detection API官方,采用以下方式来进行递归读取,返回一个包含多层级字典结构的数据。

import numpy as np
import PIL.Image
import tensorflow as tf
from lxml import etreefrom object_detection.dataset_tools import tf_record_creation_util
from object_detection.utils import dataset_util
from object_detection.utils import label_map_utilxml_path = "./Annotations/Abyssinian_12.xml"
# xml_path = "./Annotations/Lara_test.xml"with tf.gfile.GFile(xml_path, 'r') as fid:xml_str = fid.read()xml = etree.fromstring(xml_str)
#     xml = etree.fromstring(xml_str.encode('utf-8'))data = dataset_util.recursive_parse_xml_to_dict(xml)['annotation']
#     data = dataset_util.recursive_parse_xml_to_dict(xml)print(data)
#     for item in data:
#         print(type(item))

其中调用的函数recursive_parse_xml_to_dict(xml)如下:

def recursive_parse_xml_to_dict(xml):"""Recursively parses XML contents to python dict.We assume that `object` tags are the only ones that can appearmultiple times at the same level of a tree.Args:xml: xml tree obtained by parsing XML file contents using lxml.etreeReturns:Python dictionary holding XML contents."""if not xml:return {xml.tag: xml.text}result = {}for child in xml:child_result = recursive_parse_xml_to_dict(child)if child.tag != 'object':result[child.tag] = child_result[child.tag]else:if child.tag not in result:result[child.tag] = []result[child.tag].append(child_result[child.tag])return {xml.tag: result}

2. Lara标注样式

Lara交通标志数据集的标注文件将所有的图片文件信息整合在一个文件中,截取一段如下:

<?xml version="1.0" encoding="UTF-8"?>
<dataset name="Lara_UrbanSeq1" version="0.5" comments="Public database: http://www.lara.prd.fr/benchmarks/trafficlightsrecognition"><frame number="6695" sec="487" ms="829"><objectlist><object id="18"><orientation>90</orientation><box h="39" w="18" xc="294" yc="34"/><appearance>appear</appearance><hypothesislist><hypothesis evaluation="1.0" id="1" prev="1.0"><type evaluation="1.0">Traffic Light</type><subtype evaluation="1.0">go</subtype></hypothesis></hypothesislist></object><object id="19"><orientation>90</orientation><box h="15" w="6" xc="518" yc="123"/><appearance>appear</appearance><hypothesislist><hypothesis evaluation="1.0" id="1" prev="1.0"><type evaluation="1.0">Traffic Light</type><subtype evaluation="1.0">go</subtype></hypothesis></hypothesislist></object><object id="20"><orientation>90</orientation><box h="15" w="6" xc="382" yc="122"/><appearance>appear</appearance><hypothesislist><hypothesis evaluation="1.0" id="1" prev="1.0"><type evaluation="1.0">Traffic Light</type><subtype evaluation="1.0">go</subtype></hypothesis></hypothesislist></object></objectlist><grouplist></grouplist></frame>
</dataset>

可见其主要信息都包含在tag:attrib中,是难以用递归函数来实现解析的。
对该文件进行单独测试如下:

# 测试解析xml文件
# examples_path = os.path.join(annotations_dir, 'trainval.txt')
# examples_list = dataset_util.read_examples_list(examples_path)
# xml_path = "./Annotations/Lara_UrbanSeq1_GroundTruth_cvml.xml"
# tree = ET.parse(xml_path)
# root = tree.getroot()
# print(root.tag)
# print(root.attrib)
# print(root[11178].tag)
# print(root[11178].attrib)
# print(root[11178][0][0].tag)
# print(root[11178][0][0].attrib)
# for frame in root.findall("./frame")
# for obj in root[11178][0][0]:
#     print(obj.attrib)
#     print(obj.tag)

主要实现代码如下:

# 从xml文件解析出数据,以list形式返回。每个list的item都是包含相关信息的一个dict
def get_data_list(xml_path, label_map_dict):"""Function: parse xml to a list of image data, every item contain a dict of image name, size, and a list of objects.Args:xml_path: the path to the xml fileReturns:data_list: a list of data, every data is a dict contain keys.{   'filename': 'frame_006630.jpg', 'size':    {'width': 640, 'height': 480}, 'object':  [ {'bndbox': {'xmin': 368, 'xmax': 378, 'ymin': 94, 'ymax': 116}}, {'bndbox': {'xmin': 563, 'xmax': 571, 'ymin': 103, 'ymax': 123}}]}"""tree = ET.parse(xml_path)root = tree.getroot()data_list = []for frame in root.findall('./frame'):frame_number = int(frame.get("number"))img_name = "frame_{0:06d}.jpg".format(frame_number) # 得到第一个字段,文件名data = dict()data['filename']=img_nameimg_size = dict()img_size['width']=640img_size['height']=480data['size']=img_sizeobject_list=[]data['object']=object_listfor obj in frame.findall('./objectlist/object'): # 得到该帧里的每个objectobject = dict()# 这里待验证。暂时仍用读到的字符串,而没有转换为数字class_name = obj.find('./hypothesislist/hypothesis/subtype').text
#             classes_text.append(class_name.encode('utf-8'))
#             classes.append(label_map_dict[class_name])object['class_text'] = class_nameobject['class_id'] = label_map_dict[class_name]obj_h = int(obj.find('box').get("h"))    obj_w = int(obj.find('box').get("w"))obj_xc = int(obj.find('box').get("xc"))obj_yc = int(obj.find('box').get("yc"))xmin = obj_xc-int(obj_w//2)if xmin<0:xmin=0xmax = obj_xc+int(obj_w//2)ymin = obj_yc-int(obj_h//2)if ymin<0:ymin=0ymax = obj_yc+int(obj_h//2)bndbox = dict()            bndbox['xmin'] = xminbndbox['xmax'] = xmaxbndbox['ymin'] = yminbndbox['ymax'] = ymaxobject['bndbox'] = bndboxobject_list.append(object)data_list.append(data)return data_list

3. 主要对比

前者使用lxml.etree,后者使用xml.etree.ElementTree。解析过程不同。

这篇关于两种不同风格的lxml标注文件的解析:pet和Lara_UrbanSeq1_Traffic Light的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/701668

相关文章

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实