两种不同风格的lxml标注文件的解析:pet和Lara_UrbanSeq1_Traffic Light

2024-02-12 04:32

本文主要是介绍两种不同风格的lxml标注文件的解析:pet和Lara_UrbanSeq1_Traffic Light,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. pet数据集标注样式

以Abyssinian_12.xml为例,文件内容如下:

<annotation><folder>OXIIIT</folder><filename>Abyssinian_12.jpg</filename><source><database>OXFORD-IIIT Pet Dataset</database><annotation>OXIIIT</annotation><image>flickr</image></source><size><width>335</width><height>500</height><depth>3</depth></size><segmented>0</segmented><object><name>cat</name><pose>Frontal</pose><truncated>0</truncated><occluded>0</occluded><bndbox><xmin>94</xmin><ymin>83</ymin><xmax>211</xmax><ymax>190</ymax></bndbox><difficult>0</difficult></object>
</annotation>

分析可知,其节点全部为tag:text形式,每个tag不包含attrib。因此,参照Object Detection API官方,采用以下方式来进行递归读取,返回一个包含多层级字典结构的数据。

import numpy as np
import PIL.Image
import tensorflow as tf
from lxml import etreefrom object_detection.dataset_tools import tf_record_creation_util
from object_detection.utils import dataset_util
from object_detection.utils import label_map_utilxml_path = "./Annotations/Abyssinian_12.xml"
# xml_path = "./Annotations/Lara_test.xml"with tf.gfile.GFile(xml_path, 'r') as fid:xml_str = fid.read()xml = etree.fromstring(xml_str)
#     xml = etree.fromstring(xml_str.encode('utf-8'))data = dataset_util.recursive_parse_xml_to_dict(xml)['annotation']
#     data = dataset_util.recursive_parse_xml_to_dict(xml)print(data)
#     for item in data:
#         print(type(item))

其中调用的函数recursive_parse_xml_to_dict(xml)如下:

def recursive_parse_xml_to_dict(xml):"""Recursively parses XML contents to python dict.We assume that `object` tags are the only ones that can appearmultiple times at the same level of a tree.Args:xml: xml tree obtained by parsing XML file contents using lxml.etreeReturns:Python dictionary holding XML contents."""if not xml:return {xml.tag: xml.text}result = {}for child in xml:child_result = recursive_parse_xml_to_dict(child)if child.tag != 'object':result[child.tag] = child_result[child.tag]else:if child.tag not in result:result[child.tag] = []result[child.tag].append(child_result[child.tag])return {xml.tag: result}

2. Lara标注样式

Lara交通标志数据集的标注文件将所有的图片文件信息整合在一个文件中,截取一段如下:

<?xml version="1.0" encoding="UTF-8"?>
<dataset name="Lara_UrbanSeq1" version="0.5" comments="Public database: http://www.lara.prd.fr/benchmarks/trafficlightsrecognition"><frame number="6695" sec="487" ms="829"><objectlist><object id="18"><orientation>90</orientation><box h="39" w="18" xc="294" yc="34"/><appearance>appear</appearance><hypothesislist><hypothesis evaluation="1.0" id="1" prev="1.0"><type evaluation="1.0">Traffic Light</type><subtype evaluation="1.0">go</subtype></hypothesis></hypothesislist></object><object id="19"><orientation>90</orientation><box h="15" w="6" xc="518" yc="123"/><appearance>appear</appearance><hypothesislist><hypothesis evaluation="1.0" id="1" prev="1.0"><type evaluation="1.0">Traffic Light</type><subtype evaluation="1.0">go</subtype></hypothesis></hypothesislist></object><object id="20"><orientation>90</orientation><box h="15" w="6" xc="382" yc="122"/><appearance>appear</appearance><hypothesislist><hypothesis evaluation="1.0" id="1" prev="1.0"><type evaluation="1.0">Traffic Light</type><subtype evaluation="1.0">go</subtype></hypothesis></hypothesislist></object></objectlist><grouplist></grouplist></frame>
</dataset>

可见其主要信息都包含在tag:attrib中,是难以用递归函数来实现解析的。
对该文件进行单独测试如下:

# 测试解析xml文件
# examples_path = os.path.join(annotations_dir, 'trainval.txt')
# examples_list = dataset_util.read_examples_list(examples_path)
# xml_path = "./Annotations/Lara_UrbanSeq1_GroundTruth_cvml.xml"
# tree = ET.parse(xml_path)
# root = tree.getroot()
# print(root.tag)
# print(root.attrib)
# print(root[11178].tag)
# print(root[11178].attrib)
# print(root[11178][0][0].tag)
# print(root[11178][0][0].attrib)
# for frame in root.findall("./frame")
# for obj in root[11178][0][0]:
#     print(obj.attrib)
#     print(obj.tag)

主要实现代码如下:

# 从xml文件解析出数据,以list形式返回。每个list的item都是包含相关信息的一个dict
def get_data_list(xml_path, label_map_dict):"""Function: parse xml to a list of image data, every item contain a dict of image name, size, and a list of objects.Args:xml_path: the path to the xml fileReturns:data_list: a list of data, every data is a dict contain keys.{   'filename': 'frame_006630.jpg', 'size':    {'width': 640, 'height': 480}, 'object':  [ {'bndbox': {'xmin': 368, 'xmax': 378, 'ymin': 94, 'ymax': 116}}, {'bndbox': {'xmin': 563, 'xmax': 571, 'ymin': 103, 'ymax': 123}}]}"""tree = ET.parse(xml_path)root = tree.getroot()data_list = []for frame in root.findall('./frame'):frame_number = int(frame.get("number"))img_name = "frame_{0:06d}.jpg".format(frame_number) # 得到第一个字段,文件名data = dict()data['filename']=img_nameimg_size = dict()img_size['width']=640img_size['height']=480data['size']=img_sizeobject_list=[]data['object']=object_listfor obj in frame.findall('./objectlist/object'): # 得到该帧里的每个objectobject = dict()# 这里待验证。暂时仍用读到的字符串,而没有转换为数字class_name = obj.find('./hypothesislist/hypothesis/subtype').text
#             classes_text.append(class_name.encode('utf-8'))
#             classes.append(label_map_dict[class_name])object['class_text'] = class_nameobject['class_id'] = label_map_dict[class_name]obj_h = int(obj.find('box').get("h"))    obj_w = int(obj.find('box').get("w"))obj_xc = int(obj.find('box').get("xc"))obj_yc = int(obj.find('box').get("yc"))xmin = obj_xc-int(obj_w//2)if xmin<0:xmin=0xmax = obj_xc+int(obj_w//2)ymin = obj_yc-int(obj_h//2)if ymin<0:ymin=0ymax = obj_yc+int(obj_h//2)bndbox = dict()            bndbox['xmin'] = xminbndbox['xmax'] = xmaxbndbox['ymin'] = yminbndbox['ymax'] = ymaxobject['bndbox'] = bndboxobject_list.append(object)data_list.append(data)return data_list

3. 主要对比

前者使用lxml.etree,后者使用xml.etree.ElementTree。解析过程不同。

这篇关于两种不同风格的lxml标注文件的解析:pet和Lara_UrbanSeq1_Traffic Light的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/701668

相关文章

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Docker镜像pull失败两种解决办法小结

《Docker镜像pull失败两种解决办法小结》有时候我们在拉取Docker镜像的过程中会遇到一些问题,:本文主要介绍Docker镜像pull失败两种解决办法的相关资料,文中通过代码介绍的非常详细... 目录docker 镜像 pull 失败解决办法1DrQwWCocker 镜像 pull 失败解决方法2总

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

IDEA中Git版本回退的两种实现方案

《IDEA中Git版本回退的两种实现方案》作为开发者,代码版本回退是日常高频操作,IntelliJIDEA集成了强大的Git工具链,但面对reset和revert两种核心回退方案,许多开发者仍存在选择... 目录一、版本回退前置知识二、Reset方案:整体改写历史1、IDEA图形化操作(推荐)1.1、查看提

Android自定义Scrollbar的两种实现方式

《Android自定义Scrollbar的两种实现方式》本文介绍两种实现自定义滚动条的方法,分别通过ItemDecoration方案和独立View方案实现滚动条定制化,文章通过代码示例讲解的非常详细,... 目录方案一:ItemDecoration实现(推荐用于RecyclerView)实现原理完整代码实现