(一)MMDetection3D环境配置

2024-02-12 00:10
文章标签 配置 环境 mmdetection3d

本文主要是介绍(一)MMDetection3D环境配置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

(一)MMDetection3D环境配置

官方文档:MMDetection3D官方文档
推荐教程:通用视觉框架 OpenMMLab 系列课程之 MMDetection3D
项目地址:https://github.com/open-mmlab/mmdetection3d

第一步:Pytorch环境搭建

1.1 安装pytorch环境

conda create -n pytorch-mmdet3d python=3.8
conda activate pytorch-mmdet3d
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch

1.2 验证pytorch环境

python                     # 3.8.16
import torch
torch.__version__          # 1.10.1
torch.version.cuda         # 11.3
torch.cuda.is_available()  # True
exit()

第二步:安装MMDetection3D

2.1 安装其它包

pip install openmim          # 下载的时候容易报错,多多尝试几次
mim install mmcv-full
mim install mmdet            # 下载的时候容易报错,多多尝试几次
mim install mmsegmentation

2.2 克隆编译MMDetection3D

git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
pip install -e .

2.3 验证MMDetection3D环境

python                     # 3.8.16
import open3d
import mmcv
import mmdet
import mmdet3d
mmdet3d.__version__        # 1.0.0
exit()

第三步:使用demo程序

因为在Xshell的命令端直接运行demo程序不方便进行可视化展示,这里推荐使用MobaXterm的命令端进行可视化展示,在这里可以找到软件安装包的地址。

3.1 使用点云3D目标检测的测试demo

在/mmdetection3d/configs/second中下载预训练模型并保存到/mmdetection/checkpoint文件夹,这里下载的是SECOND模型:
second

## 测试second模型
python demo/pcd_demo.py demo/data/kitti/000008.bin \configs/second/second_hv_secfpn_8xb6-80e_kitti-3d-3class.py \checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-3class.pth \--show

show:表示是否对测试结果进行可视化,需要安装open3d库(没有的话,直接pip install open3d安装一下即可)。

原图如下:
原图1
可视化的结果展示如下:
结果展示1

3.2 使用图像3D目标检测的测试demo(最新的代码存在bug,还在修复)

在/mmdetection3d/configs/smoke中下载预训练模型并保存到/mmdetection/checkpoint文件夹,这里下载的是SMOKE模型:
smoke

## 测试smoke模型
python demo/mono_det_demo.py \demo/data/nuscenes/n015-2018-07-24-11-22-45+0800__CAM_BACK__1532402927637525.jpg \configs/smoke/smoke_dla34_dlaneck_gn-all_4xb8-6x_kitti-mono3d.pkl \checkpoints/smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d.pth \--show

show:表示是否对测试结果进行可视化,需要安装open3d库(没有的话,直接pip install open3d安装一下即可)。

原图如下:
原图2
可视化结果如下:

第四步:准备数据集

4.1 KITTI数据集

4.1.1 官网下载KITTI数据集

在KITTI 3D object detection dataset下载KITTI数据集安装包。
当然,如果在官网下载麻烦的话,我已经下载好了,使用百度网盘可以直接进行下载。
百度网盘链接:https://pan.baidu.com/s/1K-UaIFUt_bibjC6ZtLUKYA
提取码:7jq1
道路平面信息是由 AVOD 生成的,其在训练过程中作为一个可选项,用来提高模型的性能,点击下载道路平面信息。
KITTI datasets

4.1.2 官网下载KITTI数据集后的组织结构

在官网下载KITTI数据集后,并在mmdetection3d文件夹下组织成以下所示的结构。

mmdetection3d
├── configs
├── mmdet3d
├── tools
├── data
│   ├── kitti
│   │   ├── ImageSets
│   │   ├── testing
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   ├── velodyne
│   │   ├── training
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   ├── label_2
│   │   │   ├── velodyne
│   │   │   ├── planes
4.1.3 数据预处理

项目的数据预处理需要使用tools/create_data.py重新处理一次。

cd mmdetection3d
mkdir ./data/kitti/ && mkdir ./data/kitti/ImageSets# Download data split
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/test.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/test.txt
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/train.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/train.txt
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/val.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/val.txt
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/trainval.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/trainval.txt# Data preprocessing
python tools/create_data.py kitti --root-path ./data/kitti --out-dir ./data/kitti --extra-tag kitti --with-plane
4.1.4 数据预处理后的组织结构

项目的数据预处理后,在mmdetection3d文件夹下将会组织成以下所示的结构。

mmdetection3d
├── configs
├── mmdet3d
├── tools
├── data
│   ├── kitti
│   │   ├── ImageSets
│   │   │   ├── test.txt
│   │   │   ├── train.txt
│   │   │   ├── trainval.txt
│   │   │   ├── val.txt
│   │   ├── testing
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   ├── velodyne
│   │   │   ├── velodyne_reduced
│   │   ├── training
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   ├── label_2
│   │   │   ├── velodyne
│   │   │   ├── velodyne_reduced
│   │   │   ├── planes
│   │   ├── kitti_gt_database
│   │   │   ├── xxxxx.bin
│   │   ├── kitti_infos_test.pkl
│   │   ├── kitti_infos_train.pkl
│   │   ├── kitti_infos_trainval.pkl
│   │   ├── kitti_infos_val.pkl
│   │   ├── kitti_dbinfos_train.pkl
│   │   ├── kitti_infos_test_mono3d.coco.json
│   │   ├── kitti_infos_train_mono3d.coco.json
│   │   ├── kitti_infos_trainval_mono3d.coco.json
│   │   ├── kitti_infos_val_mono3d.coco.json

4.2 Nuscenes数据集

4.2.1 官网下载Nuscenes数据集

在NuScenes 3D object detection dataset下载nuscenes数据集安装包,请记住下载检测数据集和地图扩展(用于BEV地图分割)。
当然,如果在官网下载麻烦的话,可以参考这篇博客使用百度网盘或者迅雷网盘进行下载。
Nuscenes datasets

4.2.2 官网下载Nuscenes数据集后的组织结构

在官网下载nuscenes数据集后,并在mmdetection3d文件夹下组织成以下所示的结构。

bevfusion
├── assets
├── configs
├── mmdet3d
├── tools
├── data
│   ├── nuscenes
│   │   ├── maps
│   │   │   ├── basemap
│   │   │   ├── expansion
│   │   │   ├── prediction
│   │   ├── samples
│   │   ├── sweeps
│   │   ├── v1.0-test
│   │   ├── v1.0-trainval
4.2.3 数据预处理

项目的数据预处理需要使用tools/create_data.py重新处理一次。

cd mmdetection3d
python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./data/nuscenes --extra-tag nuscenes
4.2.4 数据预处理后的组织结构

项目的数据预处理后,在mmdetection3d文件夹下将会组织成以下所示的结构。

mmdetection3d
├── assets
├── configs
├── mmdet3d
├── tools
├── data
│   ├── nuscenes
│   │   ├── maps
│   │   │   ├── basemap
│   │   │   ├── expansion
│   │   │   ├── prediction
│   │   ├── samples
│   │   ├── sweeps
│   │   ├── v1.0-test
│   │   ├── v1.0-trainval
│   │   ├── nuscenes_database
│   │   ├── nuscenes_infos_test.pkl
│   │   ├── nuscenes_infos_train.pkl
│   │   ├── nuscenes_infos_val.pkl
│   │   ├── nuscenes_dbinfos_train.pkl
│   │   ├── nuscenes_infos_test_mono3d.coco.json
│   │   ├── nuscenes_infos_train_mono3d.coco.json
│   │   ├── nuscenes_infos_trainval_mono3d.coco.json
│   │   ├── nuscenes_infos_val_mono3d.coco.json

第五步:训练和测试

5.1 使用已有模型在标准数据集上进行训练

5.1.1 在KITTI数据集上训练pointpillars

这里我们以在KITTI数据集上训练pointpillars为例,修改配置文件:

  • 修改epoch:打开/mmdetection3d/configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py文件,修改文件中的epoch_num = 80中的epoch_num参数。
  • 修改batch_size:打开/mmdetection3d/configs/_base_/datasets/kitti-3d-3class.py文件,修改文件中的batch_size=6中的batch_size参数,大家根据自己显卡的显存进行修改。

我们设置好参数后就可以直接执行命令进行训练了,修改配置文件:

## 单卡训练
python tools/train.py configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py## 多卡训练
CUDA_VISIBLE_DEVICES=0,1,2,3 tools/dist_train.sh configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py 4

训练结束后,我们可以在/mmdetection3d/work-dirs/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class文件夹中看到训练结果,包括日志文件(.log)、权重文件(.pth)以及模型配置文件(.py)等。
注意:训练的时候如果报 AttributeError: module ‘numpy’ has no attribute ‘long’ 的错误,请使用命令pip install numpy==1.23.0重装numpy,我原先的版本是1.24.3,重装后的版本是1.23.0。

5.1.2 在NuScenes数据集上训练pointpillars

这里我们以在NuScenes数据集上训练pointpillars为例,修改配置文件:

  • 修改epoch:打开/mmdetection3d/configs/_base_/schedules/schedule-2x.py文件,修改文件中的max_epochs=24中的max_epochs参数。
  • 修改batch_size:打开/mmdetection3d/configs/_base_/datasets/nus-3d.py文件,修改文件中的batch_size=4中的batch_size参数。

我们设置好参数后就可以直接执行命令进行训练了:

## 单卡训练
python tools/train.py configs/pointpillars/pointpillars_hv_fpn_sbn-all_8xb4_2x_nus-3d.py## 多卡训练
CUDA_VISIBLE_DEVICES=0,1,2,3 tools/dist_train.sh configs/pointpillars/pointpillars_hv_fpn_sbn-all_8xb4_2x_nus-3d.py 4

训练结束后,我们可以在/mmdetection3d/work-dirs/pointpillars_hv_secfpn_sbn-all_8xb4-2x_nus-3d文件夹中看到训练结果,包括日志文件(.log)、权重文件(.pth)以及模型配置文件(.py)等。

5.2 使用已有模型在标准数据集上进行测试

在/mmdetection3d/configs/pointpillars中下载预训练模型并保存到/mmdetection/checkpoint文件夹,这里下载的是PointPillars模型:
pointpillars

5.2.1 在KITTI数据集上测试pointpillars

这里我们以在KITTI数据集上测试pointpillars为例:
测试文件tools/test.py有两个必选参数configcheckpoint,分别为模型配置文件和训练生成的权重文件,其他几个比较重要的参数:

  • eval:使用的评价指标,取决于数据集(“bbox”, “segm”, “proposal” for COCO, and “mAP”, “recall” for PASCAL VOC),这里直接沿用了2D检测中常用的几个评价标准。
  • show:是否对测试结果进行可视化,需要安装open3d库(没有的话,直接pip install open3d安装一下即可)。
  • show_dir:测试结果的保存目录。
## 单卡测试
python tools/test.py configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py \checkpoints/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.pth
5.2.2 在NuScenes数据集上测试pointpillars

这里我们以在NuScenes数据集上测试pointpillars为例:

## 单卡测试
python tools/test.py configs/pointpillars/pointpillars_hv_fpn_sbn-all_8xb4_2x_nus-3d.py \checkpoints/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.pth

至此,MMDetection3d的环境配置到此结束!感谢大家的观看!
后续我也将为大家继续带来一些经典3D目标检测网络的代码解读,希望大家多多支持和关注!

这篇关于(一)MMDetection3D环境配置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/701186

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

springboot security之前后端分离配置方式

《springbootsecurity之前后端分离配置方式》:本文主要介绍springbootsecurity之前后端分离配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的... 目录前言自定义配置认证失败自定义处理登录相关接口匿名访问前置文章总结前言spring boot secu

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

SpringBoot中封装Cors自动配置方式

《SpringBoot中封装Cors自动配置方式》:本文主要介绍SpringBoot中封装Cors自动配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot封装Cors自动配置背景实现步骤1. 创建 GlobalCorsProperties

Spring Boot结成MyBatis-Plus最全配置指南

《SpringBoot结成MyBatis-Plus最全配置指南》本文主要介绍了SpringBoot结成MyBatis-Plus最全配置指南,包括依赖引入、配置数据源、Mapper扫描、基本CRUD操... 目录前言详细操作一.创建项目并引入相关依赖二.配置数据源信息三.编写相关代码查zsRArly询数据库数

SpringBoot配置Ollama实现本地部署DeepSeek

《SpringBoot配置Ollama实现本地部署DeepSeek》本文主要介绍了在本地环境中使用Ollama配置DeepSeek模型,并在IntelliJIDEA中创建一个Sprin... 目录前言详细步骤一、本地配置DeepSeek二、SpringBoot项目调用本地DeepSeek前言随着人工智能技

如何自定义Nginx JSON日志格式配置

《如何自定义NginxJSON日志格式配置》Nginx作为最流行的Web服务器之一,其灵活的日志配置能力允许我们根据需求定制日志格式,本文将详细介绍如何配置Nginx以JSON格式记录访问日志,这种... 目录前言为什么选择jsON格式日志?配置步骤详解1. 安装Nginx服务2. 自定义JSON日志格式各

使用Python实现网络设备配置备份与恢复

《使用Python实现网络设备配置备份与恢复》网络设备配置备份与恢复在网络安全管理中起着至关重要的作用,本文为大家介绍了如何通过Python实现网络设备配置备份与恢复,需要的可以参考下... 目录一、网络设备配置备份与恢复的概念与重要性二、网络设备配置备份与恢复的分类三、python网络设备配置备份与恢复实