(一)MMDetection3D环境配置

2024-02-12 00:10
文章标签 配置 环境 mmdetection3d

本文主要是介绍(一)MMDetection3D环境配置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

(一)MMDetection3D环境配置

官方文档:MMDetection3D官方文档
推荐教程:通用视觉框架 OpenMMLab 系列课程之 MMDetection3D
项目地址:https://github.com/open-mmlab/mmdetection3d

第一步:Pytorch环境搭建

1.1 安装pytorch环境

conda create -n pytorch-mmdet3d python=3.8
conda activate pytorch-mmdet3d
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch

1.2 验证pytorch环境

python                     # 3.8.16
import torch
torch.__version__          # 1.10.1
torch.version.cuda         # 11.3
torch.cuda.is_available()  # True
exit()

第二步:安装MMDetection3D

2.1 安装其它包

pip install openmim          # 下载的时候容易报错,多多尝试几次
mim install mmcv-full
mim install mmdet            # 下载的时候容易报错,多多尝试几次
mim install mmsegmentation

2.2 克隆编译MMDetection3D

git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
pip install -e .

2.3 验证MMDetection3D环境

python                     # 3.8.16
import open3d
import mmcv
import mmdet
import mmdet3d
mmdet3d.__version__        # 1.0.0
exit()

第三步:使用demo程序

因为在Xshell的命令端直接运行demo程序不方便进行可视化展示,这里推荐使用MobaXterm的命令端进行可视化展示,在这里可以找到软件安装包的地址。

3.1 使用点云3D目标检测的测试demo

在/mmdetection3d/configs/second中下载预训练模型并保存到/mmdetection/checkpoint文件夹,这里下载的是SECOND模型:
second

## 测试second模型
python demo/pcd_demo.py demo/data/kitti/000008.bin \configs/second/second_hv_secfpn_8xb6-80e_kitti-3d-3class.py \checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-3class.pth \--show

show:表示是否对测试结果进行可视化,需要安装open3d库(没有的话,直接pip install open3d安装一下即可)。

原图如下:
原图1
可视化的结果展示如下:
结果展示1

3.2 使用图像3D目标检测的测试demo(最新的代码存在bug,还在修复)

在/mmdetection3d/configs/smoke中下载预训练模型并保存到/mmdetection/checkpoint文件夹,这里下载的是SMOKE模型:
smoke

## 测试smoke模型
python demo/mono_det_demo.py \demo/data/nuscenes/n015-2018-07-24-11-22-45+0800__CAM_BACK__1532402927637525.jpg \configs/smoke/smoke_dla34_dlaneck_gn-all_4xb8-6x_kitti-mono3d.pkl \checkpoints/smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d.pth \--show

show:表示是否对测试结果进行可视化,需要安装open3d库(没有的话,直接pip install open3d安装一下即可)。

原图如下:
原图2
可视化结果如下:

第四步:准备数据集

4.1 KITTI数据集

4.1.1 官网下载KITTI数据集

在KITTI 3D object detection dataset下载KITTI数据集安装包。
当然,如果在官网下载麻烦的话,我已经下载好了,使用百度网盘可以直接进行下载。
百度网盘链接:https://pan.baidu.com/s/1K-UaIFUt_bibjC6ZtLUKYA
提取码:7jq1
道路平面信息是由 AVOD 生成的,其在训练过程中作为一个可选项,用来提高模型的性能,点击下载道路平面信息。
KITTI datasets

4.1.2 官网下载KITTI数据集后的组织结构

在官网下载KITTI数据集后,并在mmdetection3d文件夹下组织成以下所示的结构。

mmdetection3d
├── configs
├── mmdet3d
├── tools
├── data
│   ├── kitti
│   │   ├── ImageSets
│   │   ├── testing
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   ├── velodyne
│   │   ├── training
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   ├── label_2
│   │   │   ├── velodyne
│   │   │   ├── planes
4.1.3 数据预处理

项目的数据预处理需要使用tools/create_data.py重新处理一次。

cd mmdetection3d
mkdir ./data/kitti/ && mkdir ./data/kitti/ImageSets# Download data split
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/test.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/test.txt
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/train.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/train.txt
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/val.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/val.txt
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/trainval.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/trainval.txt# Data preprocessing
python tools/create_data.py kitti --root-path ./data/kitti --out-dir ./data/kitti --extra-tag kitti --with-plane
4.1.4 数据预处理后的组织结构

项目的数据预处理后,在mmdetection3d文件夹下将会组织成以下所示的结构。

mmdetection3d
├── configs
├── mmdet3d
├── tools
├── data
│   ├── kitti
│   │   ├── ImageSets
│   │   │   ├── test.txt
│   │   │   ├── train.txt
│   │   │   ├── trainval.txt
│   │   │   ├── val.txt
│   │   ├── testing
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   ├── velodyne
│   │   │   ├── velodyne_reduced
│   │   ├── training
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   ├── label_2
│   │   │   ├── velodyne
│   │   │   ├── velodyne_reduced
│   │   │   ├── planes
│   │   ├── kitti_gt_database
│   │   │   ├── xxxxx.bin
│   │   ├── kitti_infos_test.pkl
│   │   ├── kitti_infos_train.pkl
│   │   ├── kitti_infos_trainval.pkl
│   │   ├── kitti_infos_val.pkl
│   │   ├── kitti_dbinfos_train.pkl
│   │   ├── kitti_infos_test_mono3d.coco.json
│   │   ├── kitti_infos_train_mono3d.coco.json
│   │   ├── kitti_infos_trainval_mono3d.coco.json
│   │   ├── kitti_infos_val_mono3d.coco.json

4.2 Nuscenes数据集

4.2.1 官网下载Nuscenes数据集

在NuScenes 3D object detection dataset下载nuscenes数据集安装包,请记住下载检测数据集和地图扩展(用于BEV地图分割)。
当然,如果在官网下载麻烦的话,可以参考这篇博客使用百度网盘或者迅雷网盘进行下载。
Nuscenes datasets

4.2.2 官网下载Nuscenes数据集后的组织结构

在官网下载nuscenes数据集后,并在mmdetection3d文件夹下组织成以下所示的结构。

bevfusion
├── assets
├── configs
├── mmdet3d
├── tools
├── data
│   ├── nuscenes
│   │   ├── maps
│   │   │   ├── basemap
│   │   │   ├── expansion
│   │   │   ├── prediction
│   │   ├── samples
│   │   ├── sweeps
│   │   ├── v1.0-test
│   │   ├── v1.0-trainval
4.2.3 数据预处理

项目的数据预处理需要使用tools/create_data.py重新处理一次。

cd mmdetection3d
python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./data/nuscenes --extra-tag nuscenes
4.2.4 数据预处理后的组织结构

项目的数据预处理后,在mmdetection3d文件夹下将会组织成以下所示的结构。

mmdetection3d
├── assets
├── configs
├── mmdet3d
├── tools
├── data
│   ├── nuscenes
│   │   ├── maps
│   │   │   ├── basemap
│   │   │   ├── expansion
│   │   │   ├── prediction
│   │   ├── samples
│   │   ├── sweeps
│   │   ├── v1.0-test
│   │   ├── v1.0-trainval
│   │   ├── nuscenes_database
│   │   ├── nuscenes_infos_test.pkl
│   │   ├── nuscenes_infos_train.pkl
│   │   ├── nuscenes_infos_val.pkl
│   │   ├── nuscenes_dbinfos_train.pkl
│   │   ├── nuscenes_infos_test_mono3d.coco.json
│   │   ├── nuscenes_infos_train_mono3d.coco.json
│   │   ├── nuscenes_infos_trainval_mono3d.coco.json
│   │   ├── nuscenes_infos_val_mono3d.coco.json

第五步:训练和测试

5.1 使用已有模型在标准数据集上进行训练

5.1.1 在KITTI数据集上训练pointpillars

这里我们以在KITTI数据集上训练pointpillars为例,修改配置文件:

  • 修改epoch:打开/mmdetection3d/configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py文件,修改文件中的epoch_num = 80中的epoch_num参数。
  • 修改batch_size:打开/mmdetection3d/configs/_base_/datasets/kitti-3d-3class.py文件,修改文件中的batch_size=6中的batch_size参数,大家根据自己显卡的显存进行修改。

我们设置好参数后就可以直接执行命令进行训练了,修改配置文件:

## 单卡训练
python tools/train.py configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py## 多卡训练
CUDA_VISIBLE_DEVICES=0,1,2,3 tools/dist_train.sh configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py 4

训练结束后,我们可以在/mmdetection3d/work-dirs/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class文件夹中看到训练结果,包括日志文件(.log)、权重文件(.pth)以及模型配置文件(.py)等。
注意:训练的时候如果报 AttributeError: module ‘numpy’ has no attribute ‘long’ 的错误,请使用命令pip install numpy==1.23.0重装numpy,我原先的版本是1.24.3,重装后的版本是1.23.0。

5.1.2 在NuScenes数据集上训练pointpillars

这里我们以在NuScenes数据集上训练pointpillars为例,修改配置文件:

  • 修改epoch:打开/mmdetection3d/configs/_base_/schedules/schedule-2x.py文件,修改文件中的max_epochs=24中的max_epochs参数。
  • 修改batch_size:打开/mmdetection3d/configs/_base_/datasets/nus-3d.py文件,修改文件中的batch_size=4中的batch_size参数。

我们设置好参数后就可以直接执行命令进行训练了:

## 单卡训练
python tools/train.py configs/pointpillars/pointpillars_hv_fpn_sbn-all_8xb4_2x_nus-3d.py## 多卡训练
CUDA_VISIBLE_DEVICES=0,1,2,3 tools/dist_train.sh configs/pointpillars/pointpillars_hv_fpn_sbn-all_8xb4_2x_nus-3d.py 4

训练结束后,我们可以在/mmdetection3d/work-dirs/pointpillars_hv_secfpn_sbn-all_8xb4-2x_nus-3d文件夹中看到训练结果,包括日志文件(.log)、权重文件(.pth)以及模型配置文件(.py)等。

5.2 使用已有模型在标准数据集上进行测试

在/mmdetection3d/configs/pointpillars中下载预训练模型并保存到/mmdetection/checkpoint文件夹,这里下载的是PointPillars模型:
pointpillars

5.2.1 在KITTI数据集上测试pointpillars

这里我们以在KITTI数据集上测试pointpillars为例:
测试文件tools/test.py有两个必选参数configcheckpoint,分别为模型配置文件和训练生成的权重文件,其他几个比较重要的参数:

  • eval:使用的评价指标,取决于数据集(“bbox”, “segm”, “proposal” for COCO, and “mAP”, “recall” for PASCAL VOC),这里直接沿用了2D检测中常用的几个评价标准。
  • show:是否对测试结果进行可视化,需要安装open3d库(没有的话,直接pip install open3d安装一下即可)。
  • show_dir:测试结果的保存目录。
## 单卡测试
python tools/test.py configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py \checkpoints/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.pth
5.2.2 在NuScenes数据集上测试pointpillars

这里我们以在NuScenes数据集上测试pointpillars为例:

## 单卡测试
python tools/test.py configs/pointpillars/pointpillars_hv_fpn_sbn-all_8xb4_2x_nus-3d.py \checkpoints/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.pth

至此,MMDetection3d的环境配置到此结束!感谢大家的观看!
后续我也将为大家继续带来一些经典3D目标检测网络的代码解读,希望大家多多支持和关注!

这篇关于(一)MMDetection3D环境配置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/701186

相关文章

Keepalived+Nginx双机配置小结

《Keepalived+Nginx双机配置小结》本文主要介绍了Keepalived+Nginx双机配置小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1.1 软硬件要求1.2 部署前服务器配置调优1.3 Nginx+Keepalived部署1.3

Apache伪静态(Rewrite).htaccess文件详解与配置技巧

《Apache伪静态(Rewrite).htaccess文件详解与配置技巧》Apache伪静态(Rewrite).htaccess是一个纯文本文件,它里面存放着Apache服务器配置相关的指令,主要的... 一、.htAccess的基本作用.htaccess是一个纯文本文件,它里面存放着Apache服务器

nginx配置多域名共用服务器80端口

《nginx配置多域名共用服务器80端口》本文主要介绍了配置Nginx.conf文件,使得同一台服务器上的服务程序能够根据域名分发到相应的端口进行处理,从而实现用户通过abc.com或xyz.com直... 多个域名,比如两个域名,这两个域名其实共用一台服务器(意味着域名解析到同一个IP),一个域名为abc

nginx生成自签名SSL证书配置HTTPS的实现

《nginx生成自签名SSL证书配置HTTPS的实现》本文主要介绍在Nginx中生成自签名SSL证书并配置HTTPS,包括安装Nginx、创建证书、配置证书以及测试访问,具有一定的参考价值,感兴趣的可... 目录一、安装nginx二、创建证书三、配置证书并验证四、测试一、安装nginxnginx必须有"-

springboot rocketmq配置生产者和消息者的步骤

《springbootrocketmq配置生产者和消息者的步骤》本文介绍了如何在SpringBoot中集成RocketMQ,包括添加依赖、配置application.yml、创建生产者和消费者,并展... 目录1. 添加依赖2. 配置application.yml3. 创建生产者4. 创建消费者5. 使用在

SpringBoot使用Jasypt对YML文件配置内容加密的方法(数据库密码加密)

《SpringBoot使用Jasypt对YML文件配置内容加密的方法(数据库密码加密)》本文介绍了如何在SpringBoot项目中使用Jasypt对application.yml文件中的敏感信息(如数... 目录SpringBoot使用Jasypt对YML文件配置内容进行加密(例:数据库密码加密)前言一、J

MySQL zip安装包配置教程

《MySQLzip安装包配置教程》这篇文章详细介绍了如何使用zip安装包在Windows11上安装MySQL8.0,包括下载、解压、配置环境变量、初始化数据库、安装服务以及更改密码等步骤,感兴趣的朋... 目录mysql zip安装包配置教程1、下载zip安装包:2、安装2.1 解压zip包到安装目录2.2

MySQL 中的服务器配置和状态详解(MySQL Server Configuration and Status)

《MySQL中的服务器配置和状态详解(MySQLServerConfigurationandStatus)》MySQL服务器配置和状态设置包括服务器选项、系统变量和状态变量三个方面,可以通过... 目录mysql 之服务器配置和状态1 MySQL 架构和性能优化1.1 服务器配置和状态1.1.1 服务器选项

SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤

《SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤》本文主要介绍了SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤,文中通过示例代码介绍的非常详... 目录 目标 步骤 1:确保 ProxySQL 和 mysql 主从同步已正确配置ProxySQL 的

Spring Boot整合log4j2日志配置的详细教程

《SpringBoot整合log4j2日志配置的详细教程》:本文主要介绍SpringBoot项目中整合Log4j2日志框架的步骤和配置,包括常用日志框架的比较、配置参数介绍、Log4j2配置详解... 目录前言一、常用日志框架二、配置参数介绍1. 日志级别2. 输出形式3. 日志格式3.1 PatternL