大数据-玩转数据-双流JOIN

2023-10-03 20:54
文章标签 数据 玩转 join 双流

本文主要是介绍大数据-玩转数据-双流JOIN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、双流JOIN

在Flink中, 支持两种方式的流的Join: Window Join和Interval Join

二、Window Join

窗口join会join具有相同的key并且处于同一个窗口中的两个流的元素.
注意:
1.所有的窗口join都是 inner join, 意味着a流中的元素如果在b流中没有对应的, 则a流中这个元素就不会处理(就是忽略掉了)
2.join成功后的元素的会以所在窗口的最大时间作为其时间戳. 例如窗口[5,10), 则元素会以9作为自己的时间戳。
Window join 仍然可分为 滚动窗口、滑动窗口Join、会话窗口Join

滚动窗口Join代码段示例
在这里插入图片描述

package com.lyh.flink12;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.JoinFunction;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;/*** @Author lizhenchao@atguigu.cn* @Date 2021/1/24 22:09*/
public class Flink01_Join_Window_Tumbling {public static void main(String[] args) {StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(new Configuration());env.setParallelism(1);SingleOutputStreamOperator<WaterSensor> s1 = env.socketTextStream("hadoop100", 8888)  // 在socket终端只输入毫秒级别的时间戳.map(value -> {String[] datas = value.split(",");return new WaterSensor(datas[0], Long.valueOf(datas[1]), Integer.valueOf(datas[2]));}).assignTimestampsAndWatermarks(WatermarkStrategy.<WaterSensor>forMonotonousTimestamps().withTimestampAssigner(new SerializableTimestampAssigner<WaterSensor>() {@Overridepublic long extractTimestamp(WaterSensor element, long recordTimestamp) {return element.getTs() * 1000;}}));SingleOutputStreamOperator<WaterSensor> s2 = env.socketTextStream("hadoop100", 9999)  // 在socket终端只输入毫秒级别的时间戳.map(value -> {String[] datas = value.split(",");return new WaterSensor(datas[0], Long.valueOf(datas[1]), Integer.valueOf(datas[2]));}).assignTimestampsAndWatermarks(WatermarkStrategy.<WaterSensor>forMonotonousTimestamps().withTimestampAssigner(new SerializableTimestampAssigner<WaterSensor>() {@Overridepublic long extractTimestamp(WaterSensor element, long recordTimestamp) {return element.getTs() * 1000;}}));s1.join(s2).where(WaterSensor::getId).equalTo(WaterSensor::getId).window(TumblingEventTimeWindows.of(Time.seconds(5))) // 必须使用窗口.apply(new JoinFunction<WaterSensor, WaterSensor, String>() {@Overridepublic String join(WaterSensor first, WaterSensor second) throws Exception {return "first: " + first + ", second: " + second;}}).print();try {env.execute();} catch (Exception e) {e.printStackTrace();}}
}

运行结果:
在这里插入图片描述

三、Interval Join

间隔流join(Interval Join), 是指使用一个流的数据按照key去join另外一条流的指定范围的数据.
如下图: 橙色的流去join绿色的流.范围是由橙色流的event-time + lower bound和event-time + upper bound来决定的.
orangeElem.ts + lowerBound <= greenElem.ts <= orangeElem.ts + upperBound

在这里插入图片描述
Interval Join只支持event-time
必须是keyBy之后的流才可以interval join

package com.lyh.flink12;

import com.lyh.bean.WaterSensor;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.ProcessJoinFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.table.planner.expressions.In;
import org.apache.flink.util.Collector;

import java.time.Duration;public class  Sql_Join_Windows_Interval{public static void main(String[] args) {StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(new Configuration());env.setParallelism(2);SingleOutputStreamOperator<WaterSensor> s1 = env.socketTextStream("hadoop100", 8888).map(value -> {String[] data = value.split(",");return new WaterSensor(data[0],Long.valueOf(data[1]),Integer.valueOf(data[2]));}).assignTimestampsAndWatermarks(WatermarkStrategy.<WaterSensor>forBoundedOutOfOrderness(Duration.ofSeconds(2)).withTimestampAssigner(new SerializableTimestampAssigner<WaterSensor>() {@Overridepublic long extractTimestamp(WaterSensor element, long timestamp) {return element.getTs();}}));SingleOutputStreamOperator<WaterSensor> s2 = env.socketTextStream("hadoop100", 9999).map(value -> {String[] data = value.split(",");return new WaterSensor(data[0],Long.valueOf(data[1]),Integer.valueOf(data[2]));}).assignTimestampsAndWatermarks(WatermarkStrategy.<WaterSensor>forBoundedOutOfOrderness(Duration.ofSeconds(2)).withTimestampAssigner(new SerializableTimestampAssigner<WaterSensor>() {@Overridepublic long extractTimestamp(WaterSensor element, long timestamp) {return element.getTs();}}));s1.keyBy(WaterSensor::getId).intervalJoin(s2.keyBy(WaterSensor::getId)).between(Time.seconds(-2),Time.seconds(3)).process(new ProcessJoinFunction<WaterSensor, WaterSensor, String>() {@Overridepublic void processElement(WaterSensor left,WaterSensor right,Context ctx,Collector<String> out) throws Exception {out.collect(left + "," + right);}}).print();try{env.execute();} catch (Exception e){e.printStackTrace();}}}

运行结果:
在这里插入图片描述

这篇关于大数据-玩转数据-双流JOIN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/701

相关文章

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4