KAJIMA CORPORATION CONTEST 2024(AtCoder Beginner Contest 340)ABCDEF 视频讲解

本文主要是介绍KAJIMA CORPORATION CONTEST 2024(AtCoder Beginner Contest 340)ABCDEF 视频讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这场比较郁闷,C题短路,连续4次WA,导致罚时太多

A - Arithmetic Progression

Problem Statement

Print an arithmetic sequence with first term A A A, last term B B B, and common difference D D D.
You are only given inputs for which such an arithmetic sequence exists.

Constraints

1 ≤ A ≤ B ≤ 100 1 \leq A \leq B \leq 100 1AB100
1 ≤ D ≤ 100 1 \leq D \leq 100 1D100
There is an arithmetic sequence with first term A A A, last term B B B, and common difference D D D.
All input values are integers.

Input

The input is given from Standard Input in the following format:

A A A B B B D D D

Output

Print the terms of the arithmetic sequence with first term A A A, last term B B B, and common difference D D D, in order, separated by spaces.

Sample Input 1

3 9 2

Sample Output 1

3 5 7 9

The arithmetic sequence with first term 3 3 3, last term 9 9 9, and common difference 2 2 2 is ( 3 , 5 , 7 , 9 ) (3,5,7,9) (3,5,7,9).

Sample Input 2

10 10 1

Sample Output 2

10

The arithmetic sequence with first term 10 10 10, last term 10 10 10, and common difference 1 1 1 is ( 10 ) (10) (10).

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;signed main()
{cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int A, B, C;cin >> A >> B >> C;for (int i = A; i <= B; i += C)cout << i << " ";return 0;
}

B - Append

Problem Statement

You have an empty sequence A A A. There are Q Q Q queries given, and you need to process them in the order they are given.

The queries are of the following two types:
1 x: Append x x x to the end of A A A.
2 k: Find the k k k-th value from the end of A A A. It is guaranteed that the length of A A A is at least k k k when this query is given.

Constraints

1 ≤ Q ≤ 100 1 \leq Q \leq 100 1Q100
In the first type of query, x x x is an integer satisfying 1 ≤ x ≤ 1 0 9 1 \leq x \leq 10^9 1x109.
In the second type of query, k k k is a positive integer not greater than the current length of sequence A A A.

Input

The input is given from Standard Input in the following format:

Q Q Q
q u e r y 1 \mathrm{query}_1 query1
q u e r y 2 \mathrm{query}_2 query2
⋮ \vdots
q u e r y Q \mathrm{query}_Q queryQ

Each query is in one of the following two formats:

1 1 1 x x x

2 2 2 k k k

Output

Print q q q lines, where q q q is the number of queries of the second type.

The i i i-th line should contain the answer to the i i i-th such query.

Sample Input 1

5
1 20
1 30
2 1
1 40
2 3

Sample Output 1

30
20

Initially, A A A is empty.
The first query appends 20 20 20 to the end of A A A, making A = ( 20 ) A=(20) A=(20).
The second query appends 30 30 30 to the end of A A A, making A = ( 20 , 30 ) A=(20,30) A=(20,30).
The answer to the third query is 30 30 30, which is the 1 1 1-st value from the end of A = ( 20 , 30 ) A=(20,30) A=(20,30).
The fourth query appends 40 40 40 to the end of A A A, making A = ( 20 , 30 , 40 ) A=(20,30,40) A=(20,30,40).
The answer to the fifth query is 20 20 20, which is the 3 3 3-rd value from the end of A = ( 20 , 30 , 40 ) A=(20,30,40) A=(20,30,40).

Solution

具体见文末视频。

Code

#include <bits/stdc++.h>
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;signed main()
{cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int Q;cin >> Q;std::vector<int> S;while (Q --){int Op, X;cin >> Op >> X;if (Op == 1)S.push_back(X);elsecout << S[S.size() - X] << endl;}return 0;
}

C - Divide and Divide

Problem Statement

There is a single integer N N N written on a blackboard.

Takahashi will repeat the following series of operations until all integers not less than 2 2 2 are removed from the blackboard:
Choose one integer x x x not less than 2 2 2 written on the blackboard.
Erase one occurrence of x x x from the blackboard. Then, write two new integers ⌊ x 2 ⌋ \left \lfloor \dfrac{x}{2} \right\rfloor 2x and ⌈ x 2 ⌉ \left\lceil \dfrac{x}{2} \right\rceil 2x on the blackboard.
Takahashi must pay x x x yen to perform this series of operations.
Here, ⌊ a ⌋ \lfloor a \rfloor a denotes the largest integer not greater than a a a, and ⌈ a ⌉ \lceil a \rceil a denotes the smallest integer not less than a a a.
What is the total amount of money Takahashi will have paid when no more operations can be performed?

It can be proved that the total amount he will pay is constant regardless of the order in which the operations are performed.

Constraints

2 ≤ N ≤ 1 0 17 2 \leq N \leq 10^{17} 2N1017

Input

The input is given from Standard Input in the following format:

N N N

Output

Print the total amount of money Takahashi will have paid, in yen.

Sample Input 1

3

Sample Output 1

5

Here is an example of how Takahashi performs the operations:
Initially, there is one 3 3 3 written on the blackboard.
He chooses 3 3 3. He pays 3 3 3 yen, erases one 3 3 3 from the blackboard, and writes ⌊ 3 2 ⌋ = 1 \left \lfloor \dfrac{3}{2} \right\rfloor = 1 23=1 and ⌈ 3 2 ⌉ = 2 \left\lceil \dfrac{3}{2} \right\rceil = 2 23=2 on the blackboard.
There is one 2 2 2 and one 1 1 1 written on the blackboard.
He chooses 2 2 2. He pays 2 2 2 yen, erases one 2 2 2 from the blackboard, and writes ⌊ 2 2 ⌋ = 1 \left \lfloor \dfrac{2}{2} \right\rfloor = 1 22=1 and ⌈ 2 2 ⌉ = 1 \left\lceil \dfrac{2}{2} \right\rceil = 1 22=1 on the blackboard.
There are three 1 1 1s written on the blackboard.
Since all integers not less than 2 2 2 have been removed from the blackboard, the process is finished.
Takahashi has paid a total of 3 + 2 = 5 3 + 2 = 5 3+2=5 yen for the entire process, so print 5 5 5.

Sample Input 2

340

Sample Output 2

2888

Sample Input 3

100000000000000000

Sample Output 3

5655884811924144128

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>using namespace std;inline __int128 read()
{char ch = getchar();__int128 x = 0, cf = 1;while(ch < '0' || ch > '9') {if(ch == '-') cf = -1;ch = getchar();}while(ch >= '0' && ch <= '9') {x = (x << 3) + (x << 1) + (ch ^ 48);ch = getchar();}return x * cf;
}void write(__int128 x)
{if(x<0)putchar('-'),x=-x;if(x>9)write(x/10);putchar(x%10+'0');return;
}__int128 Quick_Pow(__int128 a, __int128 b)
{__int128 Result = 1;while (b){if (b & 1) Result = Result * a;a = a * a;b >>= 1;}return Result;
}signed main()
{cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);__int128 N = read();__int128 T = 0, T2 = 0;while (Quick_Pow(2, T + 1) <= 4 * N) T ++;while (Quick_Pow(2, T2 + 1) <= 2 * N) T2 ++;__int128 Result = N * T - Quick_Pow(2, T2);write(Result);return 0;
}

D - Super Takahashi Bros.

Problem Statement

Takahashi is playing a game.
The game consists of N N N stages numbered 1 , 2 , … , N 1,2,\ldots,N 1,2,,N. Initially, only stage 1 1 1 can be played.
For each stage i i i ( 1 ≤ i ≤ N − 1 1\leq i \leq N-1 1iN1 ) that can be played, you can perform one of the following two actions at stage i i i:
Spend A i A_i Ai seconds to clear stage i i i. This allows you to play stage i + 1 i+1 i+1.
Spend B i B_i Bi seconds to clear stage i i i. This allows you to play stage X i X_i Xi.
Ignoring the times other than the time spent to clear the stages, how many seconds will it take at the minimum to be able to play stage N N N?

Constraints

2 ≤ N ≤ 2 × 1 0 5 2 \leq N \leq 2\times 10^5 2N2×105
1 ≤ A i , B i ≤ 1 0 9 1 \leq A_i, B_i \leq 10^9 1Ai,Bi109
1 ≤ X i ≤ N 1 \leq X_i \leq N 1XiN
All input values are integers.

Input

The input is given from Standard Input in the following format:

N N N
A 1 A_1 A1 B 1 B_1 B1 X 1 X_1 X1
A 2 A_2 A2 B 2 B_2 B2 X 2 X_2 X2
⋮ \vdots
A N − 1 A_{N-1} AN1 B N − 1 B_{N-1} BN1 X N − 1 X_{N-1} XN1

Output

Print the answer.

Sample Input 1

5
100 200 3
50 10 1
100 200 5
150 1 2

Sample Output 1

350

By acting as follows, you will be allowed to play stage 5 5 5 in 350 350 350 seconds.
Spend 100 100 100 seconds to clear stage 1 1 1, which allows you to play stage 2 2 2.
Spend 50 50 50 seconds to clear stage 2 2 2, which allows you to play stage 3 3 3.
Spend 200 200 200 seconds to clear stage 3 3 3, which allows you to play stage 5 5 5.

Sample Input 2

10
1000 10 9
1000 10 10
1000 10 2
1000 10 3
1000 10 4
1000 10 5
1000 10 6
1000 10 7
1000 10 8

Sample Output 2

90

Sample Input 3

6
1000000000 1000000000 1
1000000000 1000000000 1
1000000000 1000000000 1
1000000000 1000000000 1
1000000000 1000000000 1

Sample Output 3

5000000000

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int SIZE = 8e5 + 10;int N;
int A[SIZE], B[SIZE], X[SIZE];
int h[SIZE], w[SIZE], e[SIZE], ne[SIZE], idx;
bool st[SIZE];
int dist[SIZE];inline void add(int a, int b, int c)
{e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx ++;
}inline int Dijkstra(int start, int finish)
{memset(dist, 0x3f, sizeof dist);priority_queue<PII, vector<PII>, greater<PII>> heap;heap.push({0, start});st[start] = 1;while (heap.size()){auto t = heap.top();heap.pop();int u = t.second, dis = t.first;for (int i = h[u]; ~i; i = ne[i])if (dist[e[i]] > w[i] + dis)dist[e[i]] = w[i] + dis, heap.push({dist[e[i]], e[i]});}if (dist[finish] == 0x3f3f3f3f) return -1;return dist[finish];
}signed main()
{cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);memset(h, -1, sizeof h);cin >> N;for (int i = 1; i < N; i ++){cin >> A[i] >> B[i] >> X[i];add(i, i + 1, A[i]), add(i, X[i], B[i]);}cout << Dijkstra(1, N) << endl;return 0;
}

E - Mancala 2

Problem Statement

There are N N N boxes numbered 0 0 0 to N − 1 N-1 N1. Initially, box i i i contains A i A_i Ai balls.
Takahashi will perform the following operations for i = 1 , 2 , … , M i=1,2,\ldots,M i=1,2,,M in order:
Set a variable C C C to 0 0 0.
Take out all the balls from box B i B_i Bi and hold them in hand.
While holding at least one ball in hand, repeat the following process:
Increase the value of C C C by 1 1 1.
Put one ball from hand into box ( B i + C ) m o d N (B_i+C) \bmod N (Bi+C)modN.
Determine the number of balls in each box after completing all operations.

Constraints

1 ≤ N ≤ 2 × 1 0 5 1 \leq N \leq 2\times 10^5 1N2×105
1 ≤ M ≤ 2 × 1 0 5 1 \leq M \leq 2\times 10^5 1M2×105
0 ≤ A i ≤ 1 0 9 0 \leq A_i \leq 10^9 0Ai109
KaTeX parse error: Expected 'EOF', got '&' at position 12: 0 \leq B_i &̲lt; N
All input values are integers.

Input

The input is given from Standard Input in the following format:

N N N M M M
A 0 A_0 A0 A 1 A_1 A1 … \ldots A N − 1 A_{N-1} AN1
B 1 B_1 B1 B 2 B_2 B2 … \ldots B M B_M BM

Output

Let X i X_i Xi be the number of balls in box i i i after completing all operations. Print X 0 , X 1 , … , X N − 1 X_0,X_1,\ldots,X_{N-1} X0,X1,,XN1 in this order, separated by spaces.

Sample Input 1

5 3
1 2 3 4 5
2 4 0

Sample Output 1

0 4 2 7 2

The operations proceed as follows:
Figure

Sample Input 2

3 10
1000000000 1000000000 1000000000
0 1 0 1 0 1 0 1 0 1

Sample Output 2

104320141 45436840 2850243019

Sample Input 3

1 4
1
0 0 0 0

Sample Output 3

1

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int SIZE = 2e5 + 10;int N, M;
int A[SIZE], B[SIZE];
struct Segment
{struct Node{int l, r;LL Sum, Max, Min, Lazy;}Tree[SIZE << 2];void Pushup(int u){Tree[u].Sum = Tree[u << 1].Sum + Tree[u << 1 | 1].Sum;Tree[u].Max = max(Tree[u << 1].Max, Tree[u << 1 | 1].Max);Tree[u].Min = min(Tree[u << 1].Min, Tree[u << 1 | 1].Min);}void Pushdown(int u){if (Tree[u].Lazy){Tree[u << 1].Max += Tree[u].Lazy;Tree[u << 1].Min += Tree[u].Lazy;Tree[u << 1].Sum += (LL)(Tree[u << 1].r - Tree[u << 1].l + 1) * Tree[u].Lazy;Tree[u << 1].Lazy += Tree[u].Lazy;Tree[u << 1 | 1].Max += Tree[u].Lazy;Tree[u << 1 | 1].Min += Tree[u].Lazy;Tree[u << 1 | 1].Sum += (LL)(Tree[u << 1 | 1].r - Tree[u << 1 | 1].l + 1) * Tree[u].Lazy;Tree[u << 1 | 1].Lazy += Tree[u].Lazy;Tree[u].Lazy = 0;}}void Build(int u, int l, int r){Tree[u] = {l, r};if (l == r) return;int mid = l + r >> 1;Build(u << 1, l, mid), Build(u << 1 | 1, mid + 1, r);}void Modify(int u, int l, int r, int d){if (Tree[u].l >= l && Tree[u].r <= r){Tree[u].Sum += (LL)(Tree[u].r - Tree[u].l + 1) * d;Tree[u].Max += d, Tree[u].Min += d;Tree[u].Lazy += d;return;}Pushdown(u);int mid = Tree[u].l + Tree[u].r >> 1;if (mid >= l) Modify(u << 1, l, r, d);if (mid < r) Modify(u << 1 | 1, l, r, d);Pushup(u);}int Query(int u, int l, int r, int k){if (Tree[u].l >= l && Tree[u].r <= r){if (k == 1) return Tree[u].Sum;else if (k == 2) return Tree[u].Max;else return Tree[u].Min;}Pushdown(u);long long mid = Tree[u].l + Tree[u].r >> 1, Result;if (k == 1) Result = 0;else if (k == 2) Result = -1e18;else Result = 1e18;if (mid >= l) Result = Query(u << 1, l, r, k);if (mid < r){if (k == 1) Result += Query(u << 1 | 1, l, r, k);else if (k == 2) Result = max(Result, Query(u << 1 | 1, l, r, k));else Result = min(Result, Query(u << 1 | 1, l, r, k));}return Result;}int Sum(int l, int r) { return Query(1, l, r, 1); }int Max(int l, int r) { return Query(1, l, r, 2); }int Min(int l, int r) { return Query(1, l, r, 3); }
}Tool;signed main()
{cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);cin >> N >> M;Tool.Build(1, 1, N);for (int i = 1; i <= N; i ++)cin >> A[i], Tool.Modify(1, i, i, A[i]);for (int i = 1; i <= M; i ++)cin >> B[i], B[i] ++;for (int i = 1; i <= M; i ++){int X = Tool.Sum(B[i], B[i]), Turn = X / N, Rest = X % N;Tool.Modify(1, 1, N, Turn);if (Rest && B[i] + Rest > N){if (B[i] + 1 <= N) Tool.Modify(1, B[i] + 1, N, 1);Tool.Modify(1, 1, Rest - N + B[i], 1);}else if (Rest) Tool.Modify(1, B[i] + 1, B[i] + Rest, 1);Tool.Modify(1, B[i], B[i], -X);}for (int i = 1; i <= N; i ++)cout << Tool.Sum(i, i) << " ";return 0;
}

F - S = 1

Problem Statement

You are given integers X X X and Y Y Y, which satisfy at least one of X ≠ 0 X \neq 0 X=0 and Y ≠ 0 Y \neq 0 Y=0.

Find a pair of integers ( A , B ) (A, B) (A,B) that satisfies all of the following conditions. If no such pair exists, report so.
− 1 0 18 ≤ A , B ≤ 1 0 18 -10^{18} \leq A, B \leq 10^{18} 1018A,B1018
The area of the triangle with vertices at points ( 0 , 0 ) , ( X , Y ) , ( A , B ) (0, 0), (X, Y), (A, B) (0,0),(X,Y),(A,B) on the x y xy xy-plane is 1 1 1.

Constraints

− 1 0 17 ≤ X , Y ≤ 1 0 17 -10^{17} \leq X, Y \leq 10^{17} 1017X,Y1017
( X , Y ) ≠ ( 0 , 0 ) (X, Y) \neq (0, 0) (X,Y)=(0,0)
X X X and Y Y Y are integers.

Input

The input is given from Standard Input in the following format:

X X X Y Y Y

Output

If there is a pair of integers ( A , B ) (A, B) (A,B) that satisfies the conditions, print it in the following format:

A A A B B B

Otherwise, print -1.

Sample Input 1

3 5

Sample Output 1

1 1

The area of the triangle with vertices at points ( 0 , 0 ) , ( 3 , 5 ) , ( 1 , 1 ) (0, 0), (3, 5), (1, 1) (0,0),(3,5),(1,1) is 1 1 1. Thus, ( A , B ) = ( 1 , 1 ) (A, B) = (1, 1) (A,B)=(1,1) satisfies the conditions.

Sample Input 2

-2 0

Sample Output 2

0 1

Sample Input 3

8752654402832944 -6857065241301125

Sample Output 3

-1

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;int Exgcd(int a, int b, int &x, int &y)
{if (!b){x = 1, y = 0;return a;}int d = Exgcd(b, a % b, y, x);y -= a / b * x;return d;
}signed main()
{cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int X, Y;cin >> X >> Y;if (((2 % __gcd(X, Y) + abs(__gcd(X, Y))) % __gcd(X, Y)) != 0)cout << -1 << endl;else{int A, B;int d = Exgcd(Y, X, A, B);cout << A * (2 / abs(d)) << " " << (-B) * (2 / abs(d)) << endl;}return 0;
}

G - Leaf Color

G题还没研究,等后面研究下。

视频题解

Atcoder Beginner Contest 340(A ~ F)


最后祝大家早日在这里插入图片描述

这篇关于KAJIMA CORPORATION CONTEST 2024(AtCoder Beginner Contest 340)ABCDEF 视频讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/700508

相关文章

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

流媒体平台/视频监控/安防视频汇聚EasyCVR播放暂停后视频画面黑屏是什么原因?

视频智能分析/视频监控/安防监控综合管理系统EasyCVR视频汇聚融合平台,是TSINGSEE青犀视频垂直深耕音视频流媒体技术、AI智能技术领域的杰出成果。该平台以其强大的视频处理、汇聚与融合能力,在构建全栈视频监控系统中展现出了独特的优势。视频监控管理系统EasyCVR平台内置了强大的视频解码、转码、压缩等技术,能够处理多种视频流格式,并以多种格式(RTMP、RTSP、HTTP-FLV、WebS

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题是由安全生产模拟考试一点通提供,流动式起重机司机证模拟考试题库是根据流动式起重机司机最新版教材,流动式起重机司机大纲整理而成(含2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题参考答案和部分工种参考解析),掌握本资料和学校方法,考试容易。流动式起重机司机考试技

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

2024网安周今日开幕,亚信安全亮相30城

2024年国家网络安全宣传周今天在广州拉开帷幕。今年网安周继续以“网络安全为人民,网络安全靠人民”为主题。2024年国家网络安全宣传周涵盖了1场开幕式、1场高峰论坛、5个重要活动、15场分论坛/座谈会/闭门会、6个主题日活动和网络安全“六进”活动。亚信安全出席2024年国家网络安全宣传周开幕式和主论坛,并将通过线下宣讲、创意科普、成果展示等多种形式,让广大民众看得懂、记得住安全知识,同时还

2014 Multi-University Training Contest 8小记

1002 计算几何 最大的速度才可能拥有无限的面积。 最大的速度的点 求凸包, 凸包上的点( 注意不是端点 ) 才拥有无限的面积 注意 :  凸包上如果有重点则不满足。 另外最大的速度为0也不行的。 int cmp(double x){if(fabs(x) < 1e-8) return 0 ;if(x > 0) return 1 ;return -1 ;}struct poin