Clarke and MST(最大生成树)

2024-02-11 10:32
文章标签 生成 最大 mst clarke

本文主要是介绍Clarke and MST(最大生成树),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

克拉克是一名人格分裂患者。某一天克拉克变成了一名图论研究者。  
他学习了最小生成树的几个算法,于是突发奇想,想做一个位运算and的最大生成树。  
一棵生成树是由n-1n−1条边组成的,且nn个点两两可达。一棵生成树的大小等于所有在生成树上的边的权值经过位运算and后得到的数。  
现在他想找出最大的生成树。
输入描述
第一行是一个整数T(1 \le T \le 5)T(1≤T≤5),表示数据组数。  
每组数据第一行是两个整数n, m(1 \le n, m \le 300000)n,m(1≤n,m≤300000),分别表示点个数和边个数。其中n, m > 100000n,m>100000的数据最多一组。  
接下来mm行,每行33个整数x, y, w(1 \le x, y \le n, 0 \le w \le 10^9)x,y,w(1≤x,y≤n,0≤w≤10
​9
​​ ),表示x, yx,y之间有一条大小为ww的边。
输出描述
每组数据输出一行一个数,表示答案。若不存在生成树,输出00。
输入样例
1
4 5
1 2 5
1 3 3
1 4 2
2 3 1
3 4 7
输出样例
1
最大生成树,只不过答案是用&计算。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct node
{int x,y,c;
} std1[300006];
int f[300006];
bool cmp(node n,node m)
{return n.c>m.c;
}
int find(int r)
{if(r==f[r]){return r;}else{f[r]=find(f[r]);return f[r];}
}
int merge(node n)
{int xx=find(n.x);int yy=find(n.y);if(xx!=yy){f[yy]=xx;return 1;}return 0;
}
int main()
{int t,n,m,j,k,i;scanf("%d",&t);while(t--){scanf("%d %d",&n,&m);for(i=1; i<=n; i++){f[i]=i;}for(i=1; i<=m; i++){scanf("%d %d %d",&std1[i].x,&std1[i].y,&std1[i].c);}sort(std1+1,std1+m+1,cmp);int f=0;int cont=0;int sum;int k=1;for(i=1; i<=m; i++){if(merge(std1[i])==1){if(k==1){k=0;merge(std1[i]);sum=std1[i].c;}else if(k==0){sum&=std1[i].c;merge(std1[i]);}cont++;}if(cont==n-1){f=1;}}if(f==0){printf("0\n");}else{printf("%d\n",sum);}}return 0;
}



   

这篇关于Clarke and MST(最大生成树)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/699557

相关文章

如何提高Redis服务器的最大打开文件数限制

《如何提高Redis服务器的最大打开文件数限制》文章讨论了如何提高Redis服务器的最大打开文件数限制,以支持高并发服务,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录如何提高Redis服务器的最大打开文件数限制问题诊断解决步骤1. 修改系统级别的限制2. 为Redis进程特别设置限制

详解Java中如何使用JFreeChart生成甘特图

《详解Java中如何使用JFreeChart生成甘特图》甘特图是一种流行的项目管理工具,用于显示项目的进度和任务分配,在Java开发中,JFreeChart是一个强大的开源图表库,能够生成各种类型的图... 目录引言一、JFreeChart简介二、准备工作三、创建甘特图1. 定义数据集2. 创建甘特图3.

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

hdu 1102 uva 10397(最小生成树prim)

hdu 1102: 题意: 给一个邻接矩阵,给一些村庄间已经修的路,问最小生成树。 解析: 把已经修的路的权值改为0,套个prim()。 注意prim 最外层循坏为n-1。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstri

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

poj 3723 kruscal,反边取最大生成树。

题意: 需要征募女兵N人,男兵M人。 每征募一个人需要花费10000美元,但是如果已经招募的人中有一些关系亲密的人,那么可以少花一些钱。 给出若干的男女之间的1~9999之间的亲密关系度,征募某个人的费用是10000 - (已经征募的人中和自己的亲密度的最大值)。 要求通过适当的招募顺序使得征募所有人的费用最小。 解析: 先设想无向图,在征募某个人a时,如果使用了a和b之间的关系