poj3264(区间最值问题RMQ)

2024-02-11 05:08
文章标签 问题 区间 rmq 最值 poj3264

本文主要是介绍poj3264(区间最值问题RMQ),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目大意:给出一串数字,然后给出一个区间a b,输出从a到b的最大的数和最小的数的差。

N(1 ≤ N ≤ 50000), Q(1 ≤ Q ≤ 200000);N为数字个数,1 ≤每个数 ≤ 1,000,000。。。如:
输入:
6 3
1
7
3
4
2
5
1 5
4 6
2 2
输出:
6
3
0

解题方法:用线段树和稀疏表均可以做。

  • 线段树
#include <cstdio>
#include <algorithm>
using namespace std;
///
const int MAX_N = 5e4 + 5;
const int INF = 0x3f3f3f3f;
typedef pair<int, int> P;
///
P dat[4 * MAX_N];//存储线段树的全局数组
int n;
//初始化
void init(int N) {n = 1;while (n < N) n <<= 1;//简单起见,把元素个数扩大到2的幂for (int i = 0; i < 2 * n - 1; ++i) {dat[i].first = INF;//存储区间最小值dat[i].second = -INF;//存储区间最大值}
}
//把第k个值更新为x
void update(int k, int x) {k += n - 1;dat[k] = P(x, x);while (k > 0) {//向上更新k = (k - 1) / 2;dat[k].first = min(dat[2 * k + 1].first, dat[2 * k + 2].first);dat[k].second = max(dat[2 * k + 1].second, dat[2 * k + 2].second);}
}
//查询
P query(int a, int b, int k, int l, int r) {//k是节点编号if (a <= l && r <= b) return dat[k];if (a > r || b < l) return P(INF, -INF);P vl = query(a, b, 2 * k + 1, l, (l + r) / 2);P vr = query(a, b, 2 * k + 2, (l + r) / 2 + 1, r);return P(min(vl.first, vr.first), max(vl.second, vr.second));
}
int main() {int N, Q;scanf("%d%d", &N, &Q);init(N);for (int i = 0; i < N; ++i) {int x;scanf("%d", &x);update(i, x);}for (int i = 0; i < Q; ++i) {int a, b;scanf("%d%d", &a, &b);P p = query(a - 1, b - 1, 0, 0, n - 1);printf("%d\n", p.second - p.first);}return 0;
}

n个元素的线段树的初始化的时间复杂度和空间复杂度都是O(n),对于n个元素,每一次操作的复杂度是O(logn)。

  • 稀疏表
    实质为动态规划。

预处理: 预处理是采用dp的思想,用f[i][j]表示区间[i,i+2j-1]中的最大值(即从i开始,长度为2j的闭区间)。开始时,f[i][0] 就是区间[i][i]的值,即f[i][0] = num[i],好了,初始值找到了,下面是状态转移方程:f[i][j] = max (f[i][j-1],f[i+2(j-1)][j-1])。即把[i,i+2j-1]区间分为[i,i+2(j-1)-1]和[j+2(j-1),j+2(j-1)+2(j-1)-1]两个等长度的区间(区间长度都是2^(j-1)),有了初始值和状态转移方程,我们可以自底向上递推出所有的f[i][j]的值。边界值的处理: 由于区间最大长度为n,所以二维边界最大值为log(n)/log(2.0);一维边界为i+2^j-1<=n。查询: 假设要查询区间[a,b]的最大值,由于区间的长度很可能不是2的整数幂,所以我们要把区间划分为长度为2的整数幂的两部分,而且这两个的并集必须是[a,b]。为了实现这个方案,我们需要先求出一个最大k,使得2k<=(b-a+1),这样就可以把区间分为两部分[a,a+2k-1]和[b-2^k+1,b],使它们既能不超过[a,b]区间的范围,又能把区间全部覆盖。于是,[a,b]区间的最大值就等于上述两个区间的最大值中最大的那个。

#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
//
const int INF = 0x3f3f3f3f;
const int MAX_N = 5e4 + 5;
typedef pair<int, int> P;
/
int num[MAX_N];
P dp[MAX_N][20];
void init(int n) {int k = (int)(log(n) / log(2.0));for (int i = 0; i < n; ++i)for (int j = 0; j <= k; ++j) {dp[i][j].first = INF;dp[i][j].second = -INF;}       
}
void creat(int n) {for (int i = 0; i < n; ++i)dp[i][0].first = dp[i][0].second = num[i];int k = (int)(log(n) / log(2.0));for (int j = 1; j <= k; ++j)for (int i = 0; i + (1 << j) - 1 < n; ++i) {dp[i][j].first = min(dp[i][j - 1].first, dp[i + (1 << (j - 1))][j - 1].first);dp[i][j].second = max(dp[i][j - 1].second, dp[i + (1 << (j - 1))][j - 1].second);}
}
P query(int s, int e) {int k = (int)(log(e - s + 1) / log(2.0));return P(min(dp[s][k].first, dp[e - (1 << k) + 1][k].first), max(dp[s][k].second, dp[e - (1 << k) + 1][k].second));
}
int main() {int N, Q;scanf("%d%d", &N, &Q);for (int i = 0; i < N; ++i)scanf("%d", &num[i]);init(N);creat(N);for (int i = 0; i < Q; ++i) {int a, b;scanf("%d%d", &a, &b);P p = query(a - 1, b - 1);printf("%d\n", p.second - p.first);}return 0;
}

Sparse Table 算法可以在O(nlogn)的预处理以后实现O(1)的查询效率,从而解决了数很多(如大于100万)的RMQ问题。基于ST的RMQ在预处理时的时间复杂度和空间复杂度都达到了O(nlogn),与线段树的RMQ相比,无法高效地对值进行更新。
参考资料:http://blog.csdn.net/xiao_niu_1/article/details/7393196

这篇关于poj3264(区间最值问题RMQ)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/698910

相关文章

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

hdu 1754 I Hate It(线段树,单点更新,区间最值)

题意是求一个线段中的最大数。 线段树的模板题,试用了一下交大的模板。效率有点略低。 代码: #include <stdio.h>#include <string.h>#define TREE_SIZE (1 << (20))//const int TREE_SIZE = 200000 + 10;int max(int a, int b){return a > b ? a :

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

hdu4267区间统计

题意:给一些数,有两种操作,一种是在[a,b] 区间内,对(i - a)% k == 0 的加value,另一种操作是询问某个位置的值。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import

hdu4417区间统计

给你一个数列{An},然后有m次查询,每次查询一段区间 [l,r] <= h 的值的个数。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamRead

hdu3333区间统计

题目大意:求一个区间内不重复数字的和,例如1 1 1 3,区间[1,4]的和为4。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo