Python基础篇_修饰符(Decorators)【下】

2024-02-10 17:04

本文主要是介绍Python基础篇_修饰符(Decorators)【下】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上一篇:Python基础篇_修饰符(Decorators)【中】@property、@<attribute_name>.setter、@<attribute_name>.deleter、@functools.lru_cache(maxsize=None)

 Python基础篇_修饰符(Decorators)【下】

  • Python基础篇_修饰符(Decorators)【下】
    • 一、修饰符一般特点
    • 二、常用的修饰符以及用法举例
      • 7) @abc.abstractmethod,抽象方法
      • 8) @functools.singledispatch,函数重载
      • 9) @contextlib.contextmanager,上下文管理

Python基础篇_修饰符(Decorators)【下】

Python中有多种修饰符,这些修饰符用于指定方法的特殊行为或属性,也是用于修改函数行为的特殊参数。

一、修饰符一般特点

  1. 修饰符只能用于类定义中,不能用于普通函数中
  2. 属性修饰符是可叠加的,也就是说,一个方法可以同时被多个属性修饰符修饰

二、常用的修饰符以及用法举例

7) @abc.abstractmethod,抽象方法

@abc.abstractmethod用于指示一个方法是抽象的,这意味着这个方法必须在任何非抽象的子类中被重写。它属于abc模块,即抽象基类模块。

当你定义一个抽象基类并使用@abc.abstractmethod装饰器标记一个方法时,任何子类都必须实现这个方法,否则它将引发TypeError

示例1: AbstractClassExample类的抽象方法my_abstract_method

import abcclass AbstractClassExample(metaclass=abc.ABCMeta):@abc.abstractmethoddef my_abstract_method(self):passclass ConcreteClass(AbstractClassExample):def my_abstract_method(self):print("This is the implementation of the abstract method.")# 下面的代码将引发TypeError,因为my_abstract_method在BrokenClass中未被实现。
# class BrokenClass(AbstractClassExample):
#     pass
在这个例子中,AbstractClassExample是一个抽象基类,它有一个抽象方法my_abstract_method
任何继承自AbstractClassExample的子类都必须实现my_abstract_method方法
ConcreteClass是一个实现了该方法的子类
尝试创建一个没有实现该方法的子类(如被注释掉的BrokenClass)将引发TypeError

示例2:Vehicle类的抽象方法startstop

import abcclass Vehicle(metaclass=abc.ABCMeta):@abc.abstractmethoddef start(self):pass@abc.abstractmethoddef stop(self):passclass Car(Vehicle):def start(self):print("Car started!")def stop(self):print("Car stopped!")class Bike(Vehicle):def start(self):print("Bike started!")def stop(self):print("Bike stopped!")# 下面的代码将引发TypeError,因为Vehicle是一个抽象基类,要求子类必须实现start和stop方法。
# class Train(Vehicle):
#     pass
在这个例子中,AbstractClassExample是一个抽象基类,它有一个抽象方法my_abstract_method
任何继承自AbstractClassExample的子类都必须实现my_abstract_method方法
ConcreteClass是一个实现了该方法的子类
尝试创建一个没有实现该方法的子类(如被注释掉的BrokenClass)将引发TypeError

示例3:Shape类的抽象方法area

import abcclass Shape(metaclass=abc.ABCMeta):@abc.abstractmethoddef area(self):passclass Circle(Shape):def __init__(self, radius):self.radius = radiusdef area(self):return 3.14 * self.radius ** 2class Rectangle(Shape):def __init__(self, width, height):self.width = widthself.height = heightdef area(self):return self.width * self.height# 下面的代码将引发TypeError,因为Shape是一个抽象基类,要求子类必须实现area方法。
# class Triangle(Shape):
#     pass    
在这个例子中,Shape是一个抽象基类,有一个抽象方法area。任何子类必须实现这个方法。
Circle和`Rectangle`都是Shape的子类,并实现了area方法。
尝试创建一个没有实现该方法的子类(如被注释掉的Triangle)将引发TypeError

8) @functools.singledispatch,函数重载

@functools.singledispatchfunctools 模块提供的一个装饰器,用于实现多分派。具体来说,它可以将函数重定向到其他函数,基于第一个参数的类型。

示例1:foo方法重载

from functools import singledispatch# 定义一个使用 @singledispatch 的函数
@singledispatch
def foo(arg):raise NotImplementedError("Unsupported type for foo")# 定义一个具体的实现,用于处理字符串类型的参数
@foo.register(str)
def _(arg):return f"You provided a string: {arg}"# 定义一个具体的实现,用于处理整数类型的参数
@foo.register(int)
def _(arg):return f"You provided an integer: {arg}"# 使用函数
print(foo("Hello"))  
print(foo(42))  
print(foo(0.5)) 
# 执行结果
You provided a string: Hello
You provided an integer: 42
NotImplementedError: Unsupported type for foo

示例2:bar方法重载

from functools import singledispatch# 定义一个使用 @singledispatch 的函数
@singledispatch
def bar(arg):raise NotImplementedError("Unsupported type for bar")# 定义一个具体的实现,用于处理字符串类型的参数
@bar.register(str)
def _(arg):return f"You provided a string: {arg}"# 定义一个具体的实现,用于处理整数类型的参数
@bar.register(int)
def _(arg):return f"You provided an integer: {arg}"# 定义一个具体的实现,用于处理列表类型的参数
@bar.register(list)
def _(arg):return f"You provided a list: {arg}"# 使用函数
print(bar("Hello")) 
print(bar(42)) 
print(bar([1, 2, 3])) 
print(bar(0.5)) 
# 执行结果
You provided a string: Hello
You provided an integer: 42
You provided a list: [1, 2, 3]
NotImplementedError: Unsupported type for bar

示例3:baz方法重载

from functools import singledispatch# 定义一个使用 @singledispatch 的函数
@singledispatch
def baz(arg):raise NotImplementedError("Unsupported type for baz")# 定义一个具体的实现,用于处理字符串类型的参数
@baz.register(str)
def _(arg):return f"You provided a string: {arg}"# 定义一个具体的实现,用于处理整数类型的参数
@baz.register(int)
def _(arg):return f"You provided an integer: {arg}"# 定义一个具体的实现,用于处理列表类型的参数
@baz.register(list)
def _(arg):return f"You provided a list: {arg}"# 定义一个更通用的实现,用于处理其他类型
@baz.register
def _(arg):return f"You provided an unknown type: {type(arg)}"# 使用函数
print(baz("Hello"))
print(baz(42))
print(baz([1, 2, 3]))
print(baz(0.5))
# 执行结果
You provided a string: Hello
You provided an integer: 42
You provided a list: [1, 2, 3]
You provided an unknown type: <class 'float'>

9) @contextlib.contextmanager,上下文管理

@contextlib.contextmanager 用于简化上下文管理器的创建。上下文管理器允许你在代码的某个特定部分设置一个上下文,该上下文在其他部分可能无法访问或可能更改。常见的使用场景包括文件操作、线程锁等。

使用 @contextlib.contextmanager 装饰器可以使您以声明式方式编写上下文管理器,而无需实现 __enter____exit__ 方法。这对于简化某些上下文管理任务非常有用。

示例1:名为 timer 的上下文管理器

接受一个名称参数并打印出开始和结束时间

import contextlib
import time@contextlib.contextmanager
def timer(name):print(f"Starting {name}")start_time = time.time()try:yieldfinally:end_time = time.time()print(f"{name} took {end_time - start_time} seconds")with timer("my_operation"):# 在这里执行需要计时的操作time.sleep(2)
# 执行结果
Starting my_operation
my_operation took 2.00 seconds

示例2:名为 redirect_stdout 的上下文管理器

将标准输出(通常显示在控制台)重定向到一个指定的文件

import contextlib
import os@contextlib.contextmanager
def redirect_stdout(file_path):"""将标准输出重定向到指定的文件"""original_stdout = sys.stdouttry:with open(file_path, 'w') as f:sys.stdout = fyieldfinally:sys.stdout = original_stdout# 使用重定向输出的上下文管理器
with redirect_stdout('output.txt'):print("This message will be written to the file.")

示例3:名为 thread_lock 的上下文管理器

接受一个 threading.Lock 对象作为参数。这个上下文管理器确保在 with 语句块中的代码在执行时被线程锁定

import contextlib
import threading@contextlib.contextmanager
def thread_lock(lock):"""使用线程锁的上下文管理器:param lock: threading.Lock 对象"""lock.acquire()try:yieldfinally:lock.release()# 创建一个线程锁对象
lock = threading.Lock()# 使用线程锁的上下文管理器
with thread_lock(lock):# 在此块中的代码将被线程锁定,确保同一时间只有一个线程可以执行这段代码print("Doing critical section of code...")

may the odds be ever in your favor ~

这篇关于Python基础篇_修饰符(Decorators)【下】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/697619

相关文章

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文