OpenCV-34 顶帽操作和黑帽操作

2024-02-10 06:12
文章标签 opencv 操作 34 顶帽 黑帽

本文主要是介绍OpenCV-34 顶帽操作和黑帽操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、顶帽操作(TOPHAT)

顶帽 = 原图 - 开运算

开运算的效果是去除图像外的噪点,因此原图 - 开运算就得到了去掉的噪点

通过API --- morphologyEx(img, MORPH_TOPHAT, kernel)

示例代码如下:

import cv2
import numpy as np
cv2.namedWindow("img", cv2.WINDOW_NORMAL)
cv2.resizeWindow("img", 640, 480)
img = cv2.imread("i.png")
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
new_img = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel, iterations=1)
cv2.imshow("img", np.hstack((img, new_img)))
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下:

可以看出通过顶帽操作只留下了图像外部的噪声点。

二、黑帽操作(BLACKHAT)

黑帽 = 原图 - 闭运算

闭运算可以将图形内部的噪声点去掉,那么原图 - 闭运算的结果就是图形内部的噪声点

通过API --- morphologyEx(img, MORPH_BLACKHAT, kernel)

示例代码如下:

import cv2
import numpy as np
cv2.namedWindow("img", cv2.WINDOW_NORMAL)
cv2.resizeWindow("img", 640, 480)
img = cv2.imread("is.png")
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 黑帽操作
new_img = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel, iterations=1)
cv2.imshow("img", np.hstack((img, new_img)))
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下:

可以看出通过顶帽操作只留下了图像内部的噪声点。 

这篇关于OpenCV-34 顶帽操作和黑帽操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/696331

相关文章

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

BUUCTF(34)特殊的 BASE64

使用pycharm时,如果想把代码撤销到之前的状态可以用 Ctrl+z 如果不小心撤销多了,可以用 Ctrl+Shift+Z 还原, 别傻傻的重新敲了 BUUCTF在线评测 (buuoj.cn) 查看字符串,想到base64的变表 这里用的c++的标准程序库中的string,头文件是#include<string> 这是base64的加密函数 std::string

opencv 滚动条

参数介绍:createTrackbar( trackbarname , "hello" , &alpha_slider ,alpha_max ,  on_trackbar )  ;在标签中显示的文字(提示滑动条的用途) TrackbarName创建的滑动条要放置窗体的名字 “hello”滑动条的取值范围从 0 到 alpha_max (最小值只能为 zero).滑动后的值存放在

android-opencv-jni

//------------------start opencv--------------------@Override public void onResume(){ super.onResume(); //通过OpenCV引擎服务加载并初始化OpenCV类库,所谓OpenCV引擎服务即是 //OpenCV_2.4.3.2_Manager_2.4_*.apk程序包,存

动手学深度学习【数据操作+数据预处理】

import osos.makedirs(os.path.join('.', 'data'), exist_ok=True)data_file = os.path.join('.', 'data', 'house_tiny.csv')with open(data_file, 'w') as f:f.write('NumRooms,Alley,Price\n') # 列名f.write('NA

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

线程的四种操作

所属专栏:Java学习        1. 线程的开启 start和run的区别: run:描述了线程要执行的任务,也可以称为线程的入口 start:调用系统函数,真正的在系统内核中创建线程(创建PCB,加入到链表中),此处的start会根据不同的系统,分别调用不同的api,创建好之后的线程,再单独去执行run(所以说,start的本质是调用系统api,系统的api

Java IO 操作——个人理解

之前一直Java的IO操作一知半解。今天看到一个便文章觉得很有道理( 原文章),记录一下。 首先,理解Java的IO操作到底操作的什么内容,过程又是怎么样子。          数据来源的操作: 来源有文件,网络数据。使用File类和Sockets等。这里操作的是数据本身,1,0结构。    File file = new File("path");   字

MySQL——表操作

目录 一、创建表 二、查看表 2.1 查看表中某成员的数据 2.2 查看整个表中的表成员 2.3 查看创建表时的句柄 三、修改表 alter 3.1 重命名 rename 3.2 新增一列 add 3.3 更改列属性 modify 3.4 更改列名称 change 3.5 删除某列 上一篇博客介绍了库的操作,接下来来看一下表的相关操作。 一、创建表 create

树莓派5_opencv笔记27:Opencv录制视频(无声音)

今日继续学习树莓派5 8G:(Raspberry Pi,简称RPi或RasPi)  本人所用树莓派5 装载的系统与版本如下:  版本可用命令 (lsb_release -a) 查询: Opencv 与 python 版本如下: 今天就水一篇文章,用树莓派摄像头,Opencv录制一段视频保存在指定目录... 文章提供测试代码讲解,整体代码贴出、测试效果图 目录 阶段一:录制一段