极值图论基础

2024-02-09 11:44
文章标签 基础 图论 极值

本文主要是介绍极值图论基础,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一,普通子图禁图

二,Turan问题

三,Turan定理、Turan图

1,Turan定理

2,Turan图

四,以完全二部图为禁图的Turan问题

1,最大边数的上界

2,最大边数的下界

五,以偶圈为禁图的Turan问题

六,Ramsey问题

1,Ramsey定理

2,Ramsey问题


一,普通子图禁图

参考普通子图

普通子图禁图指的是,给出一些具体的图,描述某个图不以这些具体的图作为普通子图。

二,Turan问题

给出一个图集F,求以F为普通子图禁图的图的最大边数,以及取到最大值的图是什么?

即,一个图最多能有多少条边,使得不以F中的任意图为普通子图。

PS:我们只关心简单图,否则如果2个点之间连无穷条多重边,那就没意义了。

PS:取到最大值的图称为极图,如果有唯一的极图,我们就说满足条件的极图是什么,不需要赘述边数了。

三,Turan定理、Turan图

1,Turan定理

以完全图K(r+1)为禁图的极图是平衡完全r部图,且没有其他极图。

2,Turan图

n个点的平衡完全r部图也叫图兰图Tr,n,即把n个点平均分成r份得到的完全r部图。

所以也可以说以完全图K(r+1)为禁图的n个点的图,唯一的极图是图兰图Tr,n

比如,以完全图K4为禁图的8个点的图,唯一的极图是T3,8:

实际上,图兰图Tr,n的边数就是(p^2r+pr+n^2-n)/2-pn,其中p=n/r

比如T3,8,n=8,r=3,p=2,(p^2r+pr+n^2-n)/2-pn=(12+6+64-8)/2-16=21

四,以完全二部图为禁图的Turan问题

1,最大边数的上界

定理:对于任意s>=t>=2,存在常数C,对于任意n,以完全二部图Ks,t为禁图的图的边数不超过Cn^{2-1/t}

猜想:对于任意s>=t>=2,以完全二部图Ks,t为禁图的图的最大边数为\Theta (n^{2-1/t})

其中,θ是渐进相等的符号。

2,最大边数的下界

存在常数C,对于任意t>=2,任意s>C^t,以完全二部图Ks,t为禁图的图的最大边数为\Theta (n^{2-1/t})

已经很接近上面的猜想了,但还没完全解决。

五,以偶圈为禁图的Turan问题

定理:对于任意k>=2,以2k个点构成的偶圈为禁图的图的边数不超过100k\cdot n^{1+1/k}

猜想:对于任意k>=2,以2k个点构成的偶圈为禁图的图的边数为\Theta(n^{1+1/k})

六,Ramsey问题

1,Ramsey定理

对于任意的s>1,t>1,一定存在一个整数N,对于任意N个点的图,要么存在s个点两两相连,要么存在t个点两两不相连。

我们把满足条件的最小N记做R(s,t)

2,Ramsey问题

Ramsey问题就是R(s,t)的大小和性质。

R(s,t)\leq \binom{s+t-2}{s-1}

这篇关于极值图论基础的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/694145

相关文章

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

C 语言基础之数组

文章目录 什么是数组数组变量的声明多维数组 什么是数组 数组,顾名思义,就是一组数。 假如班上有 30 个同学,让你编程统计每个人的分数,求最高分、最低分、平均分等。如果不知道数组,你只能这样写代码: int ZhangSan_score = 95;int LiSi_score = 90;......int LiuDong_score = 100;int Zhou

c++基础版

c++基础版 Windows环境搭建第一个C++程序c++程序运行原理注释常亮字面常亮符号常亮 变量数据类型整型实型常量类型确定char类型字符串布尔类型 控制台输入随机数产生枚举定义数组数组便利 指针基础野指针空指针指针运算动态内存分配 结构体结构体默认值结构体数组结构体指针结构体指针数组函数无返回值函数和void类型地址传递函数传递数组 引用函数引用传参返回指针的正确写法函数返回数组

【QT】基础入门学习

文章目录 浅析Qt应用程序的主函数使用qDebug()函数常用快捷键Qt 编码风格信号槽连接模型实现方案 信号和槽的工作机制Qt对象树机制 浅析Qt应用程序的主函数 #include "mywindow.h"#include <QApplication>// 程序的入口int main(int argc, char *argv[]){// argc是命令行参数个数,argv是

【MRI基础】TR 和 TE 时间概念

重复时间 (TR) 磁共振成像 (MRI) 中的 TR(重复时间,repetition time)是施加于同一切片的连续脉冲序列之间的时间间隔。具体而言,TR 是施加一个 RF(射频)脉冲与施加下一个 RF 脉冲之间的持续时间。TR 以毫秒 (ms) 为单位,主要控制后续脉冲之前的纵向弛豫程度(T1 弛豫),使其成为显著影响 MRI 中的图像对比度和信号特性的重要参数。 回声时间 (TE)

Java基础回顾系列-第七天-高级编程之IO

Java基础回顾系列-第七天-高级编程之IO 文件操作字节流与字符流OutputStream字节输出流FileOutputStream InputStream字节输入流FileInputStream Writer字符输出流FileWriter Reader字符输入流字节流与字符流的区别转换流InputStreamReaderOutputStreamWriter 文件复制 字符编码内存操作流(