【深度学习】pytorch 与 PyG 安装(pip安装)

2024-02-09 07:28

本文主要是介绍【深度学习】pytorch 与 PyG 安装(pip安装),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【深度学习】pytorch 与 PyG 安装(pip安装)

  • 一、PyTorch安装和配置
    • (一)、安装 CUDA
    • (二)、安装torch、torchvision、torchaudio三个组件
      • (1)下载镜像文件
      • (2)创建一个新的虚拟环境
      • (3)加载.whl文件并测试安装是否成功
  • 二、PyG 安装
    • (一)安装 torch_scatter 、torch_sparse 、torch_cluster 、torch_spline_conv
      • 测试:
    • 一般方式(电脑已安装好pytorch)

一、PyTorch安装和配置

深度神经网络是一种目前被广泛使用的工具,可以用于图像识别、分类,物体检测,机器翻译等等。深度学习(DeepLearning)是一种学习神经网络各种参数的方法。因此,我们将要介绍的深度学习,指的是构建神经网络结构,并且运用各种深度学习算法训练网络参数,进而解决各种任务。本文从PyTorch环境配置开始。PyTorch是一种Python接口的深度学习框架,使用灵活,学习方便。还有其他主流的深度学习框架,例如Caffe,TensorFlow,CNTK等等,各有千秋。笔者认为,初期学习还是选择一种入门,不要期望全都学会。须知,发力集中才能深入挖掘。乱花渐欲迷人眼,选择适合自己的,从一而终,相信会对科研大有裨益!

(一)、安装 CUDA

一、查看 cuda 版本

在命令行中输入 nvcc --version

nvcc --version

在这里插入图片描述

注:电脑环境此前安装好了 cuda,可参考下述教程安装cuda

https://blog.csdn.net/weixin_43848614/article/details/117221384

(二)、安装torch、torchvision、torchaudio三个组件

以python3.8为例,当然其他版本也适用。

经验:

  1. 安装cuda10.2(又写作cu102)版本对应的三个组件,是比较稳妥的

  2. 国内源容易在安装时自动替换为cpu版本,因此从pytorch官网下载较稳妥

  3. 建议使用pip安装,conda安装很可能会安装为cpu版本

(1)下载镜像文件

点击网址,下载相关镜像文件:https://download.pytorch.org/whl/cu102

在这里插入图片描述
首先选择torch,ctrl + F 搜索 [cu102-cp38-cp38-win] 这里cu102 是我们下载的 CUDA 10.2 版本,cp38-cp38 是说我们的 Python 版本是 3.8。如果要安装python3.9那将cp3.8改为cp3.9即可。

whl文件是一个压缩包,包含了所需的所有安装文件和元数据。它其中的文件是编译过得到的二进制文件,而不是C++ 源码。如果是后者,显然系统还需要 C++ 的编译器才能运行文件。

在这里插入图片描述单击即可下载,这里torch版本为1.10.0,我们要去官网查找该版本对应的torchvision 和torchaudio版本。ctrl + F 搜索 [pip install torch==1.10.0] 并且对应cuda为10.2。

在这里插入图片描述
因此torchvision需要安装0.11.0版本,torchaudio需要安装0.10.0版本。

在之前的网址中选择torchaudio,ctrl + F 搜索 [cu102-cp38-cp38-win],选择版本为0.10.0的。高亮处单击下载。

在这里插入图片描述
同理在之前的网址中选择torchvision,ctrl + F 搜索 [cu102-cp38-cp38-win],选择版本为0.11.0的。高亮处单击下载。

在这里插入图片描述

下载了3个.whl文件,建议都安装到同一个文件夹下,比如D:\pytorch_whl

下载完成后,将三个镜像文件放入一个文件夹,推荐创建一个新的虚拟环境安装。

(2)创建一个新的虚拟环境

pip 方式的创建虚拟环境见下方链接内容

https://blog.csdn.net/weixin_43848614/article/details/131906596
在这里插入图片描述

在这里插入图片描述

本人习惯使用pip方式,如果安装 Anaconda 的话,使用conda的命令创建虚拟环境。

Anaconda 操作:

默认大家都安装好Anaconda了。在开始菜单中搜索anaconda Prompt,点击进入。

创建python虚拟环境:

conda create -n your_env_name python=x.x

这里your_env_name表示你即将安装的虚拟环境的名字,x.x表示python版本。我这里设置名称为gym_gpu,安装的python版本为3.8,于是输入 conda create -n gym_gpu python=3.8 后回车:

conda activate your_env_name

(3)加载.whl文件并测试安装是否成功

pip install F:\pytorch_whl\torch-1.10.0+cu102-cp38-cp38-win_amd64.whl
pip install F:\pytorch_whl\torchaudio-0.10.0+cu102-cp38-cp38-win_amd64.whl
pip install F:\pytorch_whl\torchvision-0.11.0+cu102-cp38-cp38-win_amd64.whl

在这里插入图片描述

安装过程耐心等待,中间会从安装某些比较大的第三方库。安装结束后需要测试是否成功安装gpu版本的pytorch。

#接着检查cuda,cudnn版本
#首先进入python的交互模式
#python交互模式,直接输入python即可进入#接着输入下述代码
python
import torch #导入pytorch库
print(torch.cuda.is_available()) #查看是否有cuda
print(torch.backends.cudnn.is_available()) #查看是否有cudnn
print(torch.cuda_version) #打印cuda的版本
print(torch.backends.cudnn.version()) #打印cudnn的版本
#结果如下图

在这里插入图片描述

二、PyG 安装

PyG 全称是PyTorch-Geometric,是一个PyTorch基础上的一个库,专门用于图形式的数据,可以加速图学习算法的计算过程,比如稀疏化的图等。

(一)安装 torch_scatter 、torch_sparse 、torch_cluster 、torch_spline_conv

接上文内容,在安装 pytorch 后安装 PyG

进入下述网址后,下载 torch_scatter 、torch_sparse 、torch_cluster 、torch_spline_conv 四个包:

https://data.pyg.org/whl/torch-1.10.0%2Bcu102.html

在这里插入图片描述

下载后将四个包放置在同一个文件夹。

在这里插入图片描述

可以使用绝对路径安装,也可以cd 安装包的位置后,使用pip安装(注:)

cd /d D:\XXX\XX\  # 安装包所存的位置
pip install torch_scatter-2.0.5-cp38-cp38-win_amd64.whl
pip install torch_sparse-0.6.7-cp38-cp38-win_amd64.whl
pip install torch_cluster-1.5.7-cp38-cp38-win_amd64.whl
pip install torch_spline_conv-1.2.0-cp38-cp38-win_amd64.whl

在这里插入图片描述
最后选择好版本PyG版本直接安装即可。

pip install torch-geometric

测试:

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import softmax, add_remaining_self_loopsclass GATConv(MessagePassing):def __init__(self, in_feats, out_feats, alpha, drop_prob=0.0):super().__init__(aggr="add")self.drop_prob = drop_probself.lin = nn.Linear(in_feats, out_feats, bias=False)self.a = nn.Parameter(torch.zeros(size=(2*out_feats, 1)))self.leakrelu = nn.LeakyReLU(alpha)nn.init.xavier_uniform_(self.a)def forward(self, x, edge_index):edge_index, _ = add_remaining_self_loops(edge_index)# 计算 Whh = self.lin(x)# 启动消息传播h_prime = self.propagate(edge_index, x=h)return h_primedef message(self, x_i, x_j, edge_index_i):# 计算a(Wh_i || wh_j)e = torch.matmul((torch.cat([x_i, x_j], dim=-1)), self.a)e = self.leakrelu(e)alpha = softmax(e, edge_index_i)alpha = F.dropout(alpha, self.drop_prob, self.training)return x_j * alphaif __name__ == "__main__":conv = GATConv(in_feats=3, out_feats=3, alpha=0.2)x = torch.rand(4, 3)edge_index = torch.tensor([[0, 1, 1, 2, 0, 2, 0, 3], [1, 0, 2, 1, 2, 0, 3, 0]], dtype=torch.long)x = conv(x, edge_index)print(x.shape)

在这里插入图片描述

一般方式(电脑已安装好pytorch)

如果你的电脑此前已经安装好了 pytorch,使用下述步骤进行安装

  1. 首先检查 Pytorch 的版本:
python -c "import torch; print(torch.__version__)"
  1. 检查一下 cuda 版本
python -c "import torch; print(torch.version.cuda)"
  1. 然后按照你的 Pytorch 版本和 cuda 版本,下载相应的轮子(whl文件)
pip install pyg-lib torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-${TORCH}+${CUDA}.html

把 ${TORCH} 换成 pytorch 的主版本号.次版本号.0。不要管补丁版本!比如你的 pytorch 版本是 1.13.1,这里只需要填 1.13.0 . 其实你可以先访问这个网址,看看它是不是存在。

软件包的命名方式:主版本号.次版本号.补丁版本号。

把 ${CUDA} 换成 cuda 版本或者 cpu。我在这里遇到了另一个坑。我是在 amazon SageMaker Studio Lab里运行的 jupyter lab,开的是 CPU 实例,因此GPU是不可用的(可以用 torch.cuda.is_available()查看)。

命令示例:

pip install pyg-lib torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-1.13.0+cpu.html

安装完毕后,再安装 torch-geometric 即可。

pip install torch-geometric

参考:

https://blog.csdn.net/zzlyw/article/details/78674543

https://zhuanlan.zhihu.com/p/612181449

https://repo.anaconda.com/archive/

这篇关于【深度学习】pytorch 与 PyG 安装(pip安装)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/693531

相关文章

pytorch之torch.flatten()和torch.nn.Flatten()的用法

《pytorch之torch.flatten()和torch.nn.Flatten()的用法》:本文主要介绍pytorch之torch.flatten()和torch.nn.Flatten()的用... 目录torch.flatten()和torch.nn.Flatten()的用法下面举例说明总结torch

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

Python 安装和配置flask, flask_cors的图文教程

《Python安装和配置flask,flask_cors的图文教程》:本文主要介绍Python安装和配置flask,flask_cors的图文教程,本文通过图文并茂的形式给大家介绍的非常详细,... 目录一.python安装:二,配置环境变量,三:检查Python安装和环境变量,四:安装flask和flas

Win11安装PostgreSQL数据库的两种方式详细步骤

《Win11安装PostgreSQL数据库的两种方式详细步骤》PostgreSQL是备受业界青睐的关系型数据库,尤其是在地理空间和移动领域,:本文主要介绍Win11安装PostgreSQL数据库的... 目录一、exe文件安装 (推荐)下载安装包1. 选择操作系统2. 跳转到EDB(PostgreSQL 的

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Linux卸载自带jdk并安装新jdk版本的图文教程

《Linux卸载自带jdk并安装新jdk版本的图文教程》在Linux系统中,有时需要卸载预装的OpenJDK并安装特定版本的JDK,例如JDK1.8,所以本文给大家详细介绍了Linux卸载自带jdk并... 目录Ⅰ、卸载自带jdkⅡ、安装新版jdkⅠ、卸载自带jdk1、输入命令查看旧jdkrpm -qa

MySQL Workbench 安装教程(保姆级)

《MySQLWorkbench安装教程(保姆级)》MySQLWorkbench是一款强大的数据库设计和管理工具,本文主要介绍了MySQLWorkbench安装教程,文中通过图文介绍的非常详细,对大... 目录前言:详细步骤:一、检查安装的数据库版本二、在官网下载对应的mysql Workbench版本,要是

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Linux安装MySQL的教程

《Linux安装MySQL的教程》:本文主要介绍Linux安装MySQL的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux安装mysql1.Mysql官网2.我的存放路径3.解压mysql文件到当前目录4.重命名一下5.创建mysql用户组和用户并修