Python基础篇_修饰符(Decorators)【中】

2024-02-09 07:12

本文主要是介绍Python基础篇_修饰符(Decorators)【中】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上一篇:Python基础篇_修饰符【上】(@decorator、@classmethod、@staticmethod)

 Python基础篇_修饰符(Decorators)[中]

  • Python基础篇_修饰符【中】
    • 一、修饰符一般特点
    • 二、常用的修饰符以及用法举例
      • 4) @property,属性装饰器;@<attribute_name>.setter,属性设置
      • 5) @<attribute_name>.deleter,删除属性
      • 6) @functools.lru_cache(maxsize=None),值缓存

Python基础篇_修饰符【中】

    Python中有多种修饰符,这些修饰符用于指定方法的特殊行为或属性,也是用于修改函数行为的特殊参数。

一、修饰符一般特点

  1. 修饰符只能用于类定义中,不能用于普通函数中
  2. 属性修饰符是可叠加的,也就是说,一个方法可以同时被多个属性修饰符修饰

二、常用的修饰符以及用法举例

4) @property,属性装饰器;@<attribute_name>.setter,属性设置

    @property用于将方法变成属性。这允许我们以类似访问属性(即直接通过点运算符)的方式来调用方法,而不需要使用括号。当我们将@property装饰一个方法时,这个方法变成了所谓的"getter",它在每次属性被读取时都会执行,并且会返回值。

    同时,我们还使用@<attribute_name>.setter,允许我们为属性提供一个设置值的方法。如果一个@property没有与之对应的@<attribute_name>.setter,则此属性为只读属性。

示例1:只读属性

class Person:def __init__(self, name):self._name = name@propertydef full_name(self):return self._name + " Doe"# 在这个例子中,我们定义了一个人的类,其中有一个只读属性`full_name`。
# 每次访问这个属性时,它都会返回带有" Doe"后缀的全名。
# 我们没有为这个属性提供setter,所以它是一个只读属性。

示例2:带有计算值的属性

class Circle:def __init__(self, radius):self._radius = radius@propertydef area(self):return 3.14 * self._radius ** 2@area.setterdef area(self, new_area):self._radius = new_area / 3.14 ** 0.5# 在这个例子中,我们有一个圆,它有一个半径属性。
# 我们还定义了一个计算面积的getter方法。为了设置面积
# 我们还定义了一个setter方法,它会根据给定的面积重新计算半径。

示例3:带有多个setter的属性

class Rectangle:def __init__(self, width, height):self._width = widthself._height = height@propertydef area(self):return self._width * self._height@area.setter  # 这个setter同时用于width和height的修改def area(self, new_area):width = new_area / self._height if self._height != 0 else 0height = new_area / self._width if self._width != 0 else 0self._width = widthself._height = height# 在这个例子中,我们有一个矩形类,它有两个属性:宽度和高度。
# 我们还定义了一个计算面积的getter方法。
# 为了设置面积,我们还定义了一个setter方法,它会根据给定的面积重新计算宽度和高度。
# 注意,这个setter方法同时用于宽度和高度属性的设置。        

5) @<attribute_name>.deleter,删除属性

    @<attribute_name>.deleter 是一个用于删除属性的装饰器,通常与 @property@<attribute_name>.setter 一起使用。它允许你定义一个方法来删除属性值。

示例1:删除Person类的name属性值

class Person:def __init__(self, name):self._name = name@propertydef name(self):return self._name@name.setterdef name(self, new_name):self._name = new_name@name.deleterdef name(self):print("Deleting name")del self._nameaPerson = Person('张三')
print(aPerson.name)
aPerson.name = '李四'
print(aPerson.name)
del aPerson.name
print(aPerson.name)
# 执行结果
张三
李四
Deleting name
AttributeError: 'Person' object has no attribute '_name'

示例2:删除User类的username属性值

class User:def __init__(self, username):self._username = username@propertydef username(self):return self._username@username.setterdef username(self, new_username):if not isinstance(new_username, str):raise ValueError("Username must be a string")self._username = new_username@username.deleterdef username(self):print("Deleting username")del self._usernameUser = User('张三')
print(User.username)
User.name = '李四'
print(User.username)
del User.name
print(User._username)
# 执行结果
张三
李四
Deleting username
AttributeError: 'User' object has no attribute '_username'

6) @functools.lru_cache(maxsize=None),值缓存

    functools.lru_cache(maxsize=None) 是 Python 的内置函数,用于实现最近最少使用 (Least Recently Used, LRU) 缓存策略。LRU 缓存是一种常见的缓存替换策略,用于决定当缓存达到其最大容量时应该丢弃哪个元素。最近最少使用的元素将被丢弃。

    lru_cache 可以用于任何可调用的对象(例如函数)。当一个函数被装饰后,它会在第一次调用时被执行,并且结果会被缓存。在随后的调用中,如果函数的参数相同,它将直接从缓存中返回结果,而不会再次执行函数。

    maxsize 参数指定了缓存的最大容量。如果将其设置为 None,则表示缓存可以无限增长。

    在计算密集型函数中,缓存之前计算的结果,在以后的调用中直接使用它们,而不需要重新计算。这样即使在多次调用计算密集型函数时,也可以快速地获取结果,而不需要重复进行计算,可以大大提高其性能。

示例1:使用缓存计算斐波那契数列

import functools@functools.lru_cache(maxsize=5)     # 缓存前5个斐波那契数
def fibonacci(n):if n < 2:return nreturn fibonacci(n-1) + fibonacci(n-2)# 计算斐波那契数列的第 10 个数
print(fibonacci(10))  # 输出: 55

示例2:使用缓存计算子集合组合

import functools@functools.lru_cache(maxsize=None) # None表示缓存无上限
def combinations(numbers):if len(numbers) == 0:return [[]]  else:results = []for i in range(len(numbers)):results += [x + [numbers[i]] for x in combinations(numbers[:i] + numbers[i+1:])]return results# 测试函数
numbers = [1, 2, 3]
print(combinations(numbers))  
# 执行结果
[[], [1], [2], [1, 2], [3], [1, 3], [2, 3], [1, 2, 3]]

示例3:使用缓存计算字符串所有子串

import functools@functools.lru_cache(maxsize=None) # None表示缓存无上限
def combinations(strings):if len(strings) == 0:return [""]else:results = []for i in range(len(strings)):results += [x + strings[i] for x in combinations(strings[:i] + strings[i+1:])]return results# 测试函数
strings = ["a", "b", "c"]
print(combinations(strings))  
# 执行结果 
['', 'a', 'b', 'c', 'ab', 'ac', 'bc', 'abc']

may the odds be ever in your favor ~

这篇关于Python基础篇_修饰符(Decorators)【中】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/693501

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专