拯救pandas计划(12)——转换包含np.nan的float64类型列为int64类型

2024-02-08 22:30

本文主要是介绍拯救pandas计划(12)——转换包含np.nan的float64类型列为int64类型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

拯救pandas计划(12)——转换包含np.nan的float64类型列为int64类型

最近发现周围的很多小伙伴们都不太乐意使用pandas,转而投向其他的数据操作库,身为一个数据工作者,基本上是张口pandas,闭口pandas了,故而写下此系列以让更多的小伙伴们爱上pandas。

系列文章说明:

系列名(系列文章序号)——此次系列文章具体解决的需求

平台:

  • windows 10

  • python 3.8

  • pandas >=1.2.4

/ 数据需求

数据如下,需要将其中的浮点型数据转换为整型数据。

df = pd.DataFrame({'A': [1., 2., 3., None, np.nan, pd.NA, 4., 5., 6., 7., 8., 9.],'B': [1., 2., 3., None, None, None, 4., 5., 6., 7., 8., 9.],'C': [1., 2., 3., np.nan, np.nan, np.nan, 4., 5., 6., 7., 8., 9.],'D': [1., 2., 3., pd.NA, pd.NA, pd.NA, 4., 5., 6., 7., 8., 9.],'E': [1., 2., 3., 0.0, 0.0, 0.0, 4., 5., 6., 7., 8., 9.]}
)

打印出样式和各列的类型,看出圈出的两列数据发生了微妙的改变,None在浮点型数据丛中自动转换成了np.nan,而pd.NA<NA>显示,列类型除[0, 3]列外都是float64,似乎是pd.NA让列类型变化了。

88b98f41e8589756f2d3fb9027ea829c.png

/ 需求拆解

众所周知,在python中的numpy模块,独自闯出了一片天地,很多关于数据处理,科学计算,机器学习的模块会使用numpy模块,而其中的numpy.nan(以下称为np.nan)多多少少带点迷惑性,在python中空值使用None填充,而在更多的数据科学中使用的是np.nan,更令人奇怪的是np.nan是浮点型数据,在pandas模块为了解决这种情形,也设置了一个空类型属性`pandas.NA(以下称为pd.NA),在pandas中能够更好的适应数据的变化。

>>> None == None
True
>>> type(np.nan)
float
>>> np.nan == np.nan
False
>>> type(pd.NA)
pandas._libs.missing.NAType
>>> pd.NA == pd.NA
<NA>

在这一例中,因为np.nan在数据列中是无法进行整型化,一种是可以将数据框转化为二维列表再遍历其中的列表将所有浮点数转换,另一种则是将np.nan转换为pd.NA,适应pandas结构,再转换各自的列。

可能注意到,上述没有提及NoneNone是一个随性的值,当有pd.NA存在时保持本性,而没有时就会随列类型变化,如B列中的None

/ 需求处理

在pandas里有几种方法可以转换数据类型,这里试用一些方法,将每列都转换成int类型:

  • astype(int)

>>> df['A'].astype(int)
TypeError  
...
TypeError: int() argument must be a string, a bytes-like object or a number, not 'NoneType'>>> df['B'].astype(int)
ValueError
...
ValueError: Cannot convert non-finite values (NA or inf) to integer>>> df['C'].astype(int)
ValueError
...
ValueError: Cannot convert non-finite values (NA or inf) to integer>>> df['D'].astype(int)
TypeError
...
TypeError: int() argument must be a string, a bytes-like object or a number, not 'NAType'>>> df['E'].astype(int)
0     1
1     2
2     3
3     0
4     0
5     0
6     4
7     5
8     6
9     7
10    8
11    9
Name: E, dtype: int32

每列都操作完后,几乎全军覆没,除了E列中所有的数都是有效数字外可以完成目标,其他的都发生了报错,报错原因基本都是int这个函数不能转换空值或者无效值。

  • map(int)

map(int)执行效果与上一个方法一样。但在pandas.map里可以使用函数,对每个值进行判断如果是空值则返回pd.NA,否则转换为int类型。

>>> df['A'].map(lambda x: pd.NA if pd.isna(x) else int(x))
0        1
1        2
2        3
3     <NA>
4     <NA>
5     <NA>
6        4
7        5
8        6
9        7
10       8
11       9
Name: A, dtype: object

后续的几列都能够完成转换,虽然类型转为了object,通过值判断可以确定已经将之前的浮点型数据转换为整型了。

可能会想,使用pd.NA可以转化成功,那么使用np.nan呢,具体原因在前文已经说明,不再赘述,可以自行测试。

(手动水印:原创CSDN宿者朽命,https://blog.csdn.net/weixin_46281427?spm=1011.2124.3001.5343,公众号A11Dot派)

  • astype('Int64')

pandas中的astype还可以转换为pandas中的Int64Dtype类型,注意astype中的大小写,其中的数字为整型,空值为pd.NA。转换效果与map(lambda x: ...)一样,不同处是列类型,这里为Int64Dtype,该类型可能在后续操作会有部分限制。

>>> df['A'].astype('Int64')
0        1
1        2
2        3
3     <NA>
4     <NA>
5     <NA>
6        4
7        5
8        6
9        7
10       8
11       9
Name: A, dtype: Int64 
>>> df['C'].astype('Int64')

/ 总结

简单的介绍了在数据框中包含空值,且需要将其中的浮点型数据转换为整型数据如何处理,因为在numpy中定义nan为浮点型数据,比通常的浮点型数据,如1.1之类的有多了些特性,在pandas中的部分操作中可能无法满足自身要求,这时不妨试试pandas中pd.NA来代替np.nan的使用,在平平凡凡的数据里也有多样的天空。

道可道,非常道。


于二零二二年四月十五作

这篇关于拯救pandas计划(12)——转换包含np.nan的float64类型列为int64类型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/692389

相关文章

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

Mysql 中的多表连接和连接类型详解

《Mysql中的多表连接和连接类型详解》这篇文章详细介绍了MySQL中的多表连接及其各种类型,包括内连接、左连接、右连接、全外连接、自连接和交叉连接,通过这些连接方式,可以将分散在不同表中的相关数据... 目录什么是多表连接?1. 内连接(INNER JOIN)2. 左连接(LEFT JOIN 或 LEFT

Redis的Hash类型及相关命令小结

《Redis的Hash类型及相关命令小结》edisHash是一种数据结构,用于存储字段和值的映射关系,本文就来介绍一下Redis的Hash类型及相关命令小结,具有一定的参考价值,感兴趣的可以了解一下... 目录HSETHGETHEXISTSHDELHKEYSHVALSHGETALLHMGETHLENHSET

Python中异常类型ValueError使用方法与场景

《Python中异常类型ValueError使用方法与场景》:本文主要介绍Python中的ValueError异常类型,它在处理不合适的值时抛出,并提供如何有效使用ValueError的建议,文中... 目录前言什么是 ValueError?什么时候会用到 ValueError?场景 1: 转换数据类型场景

C# dynamic类型使用详解

《C#dynamic类型使用详解》C#中的dynamic类型允许在运行时确定对象的类型和成员,跳过编译时类型检查,适用于处理未知类型的对象或与动态语言互操作,dynamic支持动态成员解析、添加和删... 目录简介dynamic 的定义dynamic 的使用动态类型赋值访问成员动态方法调用dynamic 的

Java将时间戳转换为Date对象的方法小结

《Java将时间戳转换为Date对象的方法小结》在Java编程中,处理日期和时间是一个常见需求,特别是在处理网络通信或者数据库操作时,本文主要为大家整理了Java中将时间戳转换为Date对象的方法... 目录1. 理解时间戳2. Date 类的构造函数3. 转换示例4. 处理可能的异常5. 考虑时区问题6.

Python中处理NaN值的技巧分享

《Python中处理NaN值的技巧分享》在数据科学和数据分析领域,NaN(NotaNumber)是一个常见的概念,它表示一个缺失或未定义的数值,在Python中,尤其是在使用pandas库处理数据时,... 目录NaN 值的来源和影响使用 pandas 的 isna()和 isnull()函数直接比较 Na

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S

基于C#实现将图片转换为PDF文档

《基于C#实现将图片转换为PDF文档》将图片(JPG、PNG)转换为PDF文件可以帮助我们更好地保存和分享图片,所以本文将介绍如何使用C#将JPG/PNG图片转换为PDF文档,需要的可以参考下... 目录介绍C# 将单张图片转换为PDF文档C# 将多张图片转换到一个PDF文档介绍将图片(JPG、PNG)转

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]