大数据对企业愈发重要,但数据驱动还是空谈

2024-02-08 11:40

本文主要是介绍大数据对企业愈发重要,但数据驱动还是空谈,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

                                             关注ITValue,查看企业级市场最新鲜、最具价值的报道!


 

连续六年来,New Vantage Partners每年都做了一项关于大型企业高管如何看待数据的调查。调查的反响愈加热烈,而结果也反映了管理层高效使用数据的要求越来越迫切。今年,调查结果喜忧参半,既有鼓舞人心的一面,也暴露了比过去都更让人忧心的地方。

 

六年前,调查里重点关注的问题和答案还是大数据,这当时在商界还是相对新颖的概念。在2018年的调查中,重点已经变成了人工智能。AI现在已经成了大型企业标配的发展重心,人们越来越认识到大数据和人工智能可以带来价值,同时也越来越感受到初创公司对知名企业的威胁。

 

参与调查的是来自57家大公司的高管人员。调查里,比例最高的行业是数据最为密集的金融服务业,此外还有生命科学、制造业、电信业和互联网产业的公司参与。自第一年以来,实际接受调查的人群也有所变化,这几年一直都有大量首席级别分管数据的高管,而这个比例在今年则一跃从去年的32%升到56%。在2012年的第一次调查时,只有12%的企业设立了首席数据官。

 

虽然现在AI在全世界各地都是新闻焦点,但调查本身其实着眼的是大数据和人工智能两方面。技术更新换代,不变的是数据爆炸和理解数据的需求。大数据和AI项目已经密不可分,尤其机器学习已经成为当前处理海量快速流通的数据的主流方法之一。

 

同理,用深度学习等基于统计学的方法来发展人工智能更是日益普及。因此,我们认为传统数据分析、大数据和人工智能是一个统一的整体,几乎所有受访者(97%)都表示所在的企业投资了这类项目。

 

调查结果揭示的最好的消息,就是各大企业依然认为能够从大数据和AI项目中获利。73%受访企业表示已经从相关项目中得到了重大价值,这个比例同样高于去年的调查结果,当时只是初步地指出,企业对数据技术日趋熟悉,也从中得到了更多价值。

 

所实现价值的类型或许跟以前的其他技术是一致的。我们认为大数据和AI是分析能力的延伸,许多公司的目标也跟我们的观点一致,即旨在达到“高级分析/更优决策”,而这些也是最可能实现的目标。

 

36%的受访公司把这个目标视为自身的当务之急,这其中的69%已经实现了目标。此外,企业间的共同目标还包括提升客户服务和开支削减。四分之一以上的企业(27%)在追求创新、颠覆、上市速度和数据变现的有机结合,而数据变现计划的优先级最低、成功率也最低(27%)。

 

调查还揭示了大公司最需要担心的一个问题,就是新公司带来的颠覆性风险。近八成受访者表示,曾经担心金融科技业的初创公司或专营大数据的公司会破坏甚至替代他们的市场地位。72%受访者认为,最具颠覆性、影响最深远的技术迄今为止还要数人工智能,这个比例远高于云计算(13%)或区块链(7%)。

 

另一个持续发酵的重要问题是,行业内现有企业转型成数据驱动文化的速度太慢了。

 

几乎所有受访者(99%)都指出,所在企业在努力转型,但目前只有三分之一取得了成功。每年的调查结果都能体现出这种理想与现实的差距,但是多年的时间并没有换来应有的进步。显然,企业需要更加上下一心,才能实现数据文化转型。许多初创公司从一开始就营造了数据驱动的文化,这也是为什么那些大的卓有成效的公司感到威胁、担心受到打击的关键原因。

 

企业用来应对数据驱动给市场带来的颠覆性变化的方法之一,就是设置新的管理职位。但是,不同的数据相关职位(首席信息官、首席数据官、首席数字官等)之间如何相互联系,目前依然缺乏清晰的定位。

 

就首席数据官(CDO)一职而言,这个角色的主要职责是什么,理想的人选该具有什么样的背景,目前都还存在巨大分歧。

 

39%受访者表示,他们的CDO主要负责数据策略和结果分析,但也有37%把这个工作交给其他高管,还有24%表示这份工作在问责上缺乏可行性。

 

在背景方面,34%受访者认为CDO应该从公司外部带动变革发生,32%则认为CDO应该是从公司内部筛选出来的老将。数据相关的高层职位需要明确职责,这对于领导AI和大数据项目、实现文化转型都是至关重要的。不过,虽然所有受访者都肯定了这一点,但是大部分公司依然缺少企业层面的数据战略。

 

大数据的重要性不断提升,挑战日益艰巨,这成了当代经济和社会的重要特征之一。多年的调查结果为这场革命提供了耐人寻味的可用材料,而人工智能的崛起只会加快这一趋势。成功的关键在于,明确企业的应对战略,为数据战略与结果分析进行明确分工,最后以系统、高效的方式推进所需变化的发生。





中国最大的技术高管实名社区,提供互联网时代最全面权威、也最前沿有趣的B2B市场信息解读。

点击【阅读原文】,进入ITValue社区,与CIO们一起脑力激荡!


我们只提供有价值的干货!

长按二维码
关注ITValue

这篇关于大数据对企业愈发重要,但数据驱动还是空谈的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/690918

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav