conda 环境中部署gunicorn+flask项目

2024-02-08 11:32

本文主要是介绍conda 环境中部署gunicorn+flask项目,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

系统环境中安装的是Python3.5,项目中需要的Python为3.6及以上的环境,所以用conda虚拟环境进行隔离。

conda

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

项目搭建

进入虚拟环境,安装所需要的包。

sh Miniconda3-py37_4.11.0-Linux-x86_64.sh
source ~/.bashrc
conda config --set auto_activate_base false
#创建虚拟环境
conda create -n pytorch python=3.6
#进入虚拟环境
conda activate pytorch
#从清华源下载安装pytorch
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda install -n pytorch pytorch torchvision cudatoolkit=10.0 
#工程需要的库用conda安装会失败,所以用的pip进行安装
#安装insightface,可以用pip安装或者python3.6 -m pip install 来安装
pip install insightface
#安装pymatting
pip install pymatting
#安装onnxruntime,onnxruntime和cuda需要版本对应,cuda10.0对应onnxruntime1.0或1.1
pip install onnxruntime-gpu==1.0 
#项目搭建依赖的库用conda就可以
#安装gunicorn
conda install gunicorn
#安装flask
conda install flask
conda install gevent
#gunicorn启动项目
gunicorn -c config.py flask_matting:app

问题

onnxruntime和cuda版本不匹配问题

  • 问题
    onnxruntime与cuda版本不匹配,可能出现的问题。
    在这里插入图片描述

  • 解决方法
    查看cuda版本

    nvcc -V
    

    在这里插入图片描述
    查看conda虚拟环境下pip的安装路径可以用pip -V来查看。
    在这里插入图片描述

gunicorn在conda虚拟环境下不能通过配置文件启动

该问题需要在gunicorn的配置文件config.py中加入如下代码,只有这样才能在log/error.log中显示问题的内容。不能用字典的形式写输出日志,使用字典的形式输出日志不显示问题的内容。

import os
import gevent.monkey
gevent.monkey.patch_all()import multiprocessing#debug = Truebind = '0.0.0.0:8000'
pidfile = 'log/gunicorn.pid'
accesslog = 'log/access.log'
errorlog = 'log/error.log'
  • 问题
    在这里插入图片描述
  • 解决方法
    通过测试不是gunicorn版本的问题。主要是因为配置文件中work_class = gevent的问题。将work_class = gevent修改为worker_class = 'gunicorn.workers.ggevent.GeventWorker就可以启动,但是不使用conda虚拟环境下的服务器上work_class = gevent可以直接启动,不需要修改。
import os
import gevent.monkey
gevent.monkey.patch_all()import multiprocessing#debug = Truebind = '0.0.0.0:7788'
pidfile = 'log/gunicorn.pid'
# accesslog = 'log/access.log'
# errorlog = 'log/error.log'logconfig_dict = {'version':1,'disable_existing_loggers': False,'loggers':{"gunicorn.error": {"level": "WARNING",# 打日志的等级可以换的,下面的同理"handlers": ["error_file"], # 对应下面的键"propagate": 1,"qualname": "gunicorn.error"},"gunicorn.access": {"level": "DEBUG","handlers": ["access_file"],"propagate": 0,"qualname": "gunicorn.access"}},'handlers':{"error_file": {"class": "logging.handlers.RotatingFileHandler","maxBytes": 1024*1024*1024,# 打日志的大小,我这种写法是1个G"backupCount": 1,# 备份多少份,经过测试,最少也要写1,不然控制不住大小"formatter": "generic",# 对应下面的键# 'mode': 'w+',"filename": "./log/gunicorn.error.log"# 打日志的路径},"access_file": {"class": "logging.handlers.RotatingFileHandler","maxBytes": 1024*1024*1024,"backupCount": 1,"formatter": "generic","filename": "./log/gunicorn.access.log",}},'formatters':{"generic": {"format": "'[%(process)d] [%(asctime)s] %(levelname)s [%(filename)s:%(lineno)s] %(message)s'", # 打日志的格式"datefmt": "[%Y-%m-%d %H:%M:%S %z]",# 时间显示方法"class": "logging.Formatter"},"access": {"format": "'[%(process)d] [%(asctime)s] %(levelname)s [%(filename)s:%(lineno)s] %(message)s'","class": "logging.Formatter"}}
}capture_output = True
#loglevel = 'warning'
loglevel = 'debug'daemon = True #后台启动
reload = True#workers = multiprocessing.cpu_count()
workers = 1
#worker_class = 'gevent'
worker_class = 'gunicorn.workers.ggevent.GeventWorker'
x_forwarded_for_header = 'X-FORWARDED-FOR'

安装的pytorch是CPU版本

conda环境中python为3.7时,用conda命令安装的pytorch可能时cpu版本,需要用conda list确认安装的是否是GPU版本。

conda install pytorch==1.4.0 torchvision cudatoolkit=10.0

Pillow、Numpy版本造成的错误

  • Pillow

    ImportError: cannot import name 'PILLOW_VERSION' from 'PIL'
    

    安装pillow==8.4.0版本

  • numpy
    安装numpy==1.20.0版本

    ValueError: numpy.ndarray size changed, may indicate binary incompatibility. Expected 88 from C header, got 80 from PyObject
    

参考资料
conda—学习笔记
在Anaconda虚拟环境中pip安装的包无法使用
CUDA Execution Provider
gunicorn flask启动没有多个worker_Gunicorn常用配置
ValueError: numpy.ndarray size changed, may indicate binary incompatibility. Expected 88 from C header, got 80 from PyObject
import torchvision报错ImportError: cannot import name ‘PILLOW_VERSION’ from ‘PIL’
解决torch.cuda.is_available()一直返回False的玄学方法之一

这篇关于conda 环境中部署gunicorn+flask项目的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/690887

相关文章

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)

《JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)》:本文主要介绍如何在IntelliJIDEA2020.1中创建和部署一个JavaWeb项目,包括创建项目、配置Tomcat服务... 目录简介:一、创建项目二、tomcat部署1、将tomcat解压在一个自己找得到路径2、在idea中添加

解决idea启动项目报错java: OutOfMemoryError: insufficient memory

《解决idea启动项目报错java:OutOfMemoryError:insufficientmemory》:本文主要介绍解决idea启动项目报错java:OutOfMemoryError... 目录原因:解决:总结 原因:在Java中遇到OutOfMemoryError: insufficient me

python项目环境切换的几种实现方式

《python项目环境切换的几种实现方式》本文主要介绍了python项目环境切换的几种实现方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 如何在不同python项目中,安装不同的依赖2. 如何切换到不同项目的工作空间3.创建项目

SpringBoot项目整合Netty启动失败的常见错误总结

《SpringBoot项目整合Netty启动失败的常见错误总结》本文总结了SpringBoot集成Netty时常见的8类问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、端口冲突问题1. Tomcat与Netty端口冲突二、主线程被阻塞问题1. Netty启动阻

python项目打包成docker容器镜像的两种方法实现

《python项目打包成docker容器镜像的两种方法实现》本文介绍两种将Python项目打包为Docker镜像的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录简单版:(一次成功,后续下载对应的软件依赖)第一步:肯定是构建dockerfile,如下:第二步

Python + Streamlit项目部署方案超详细教程(非Docker版)

《Python+Streamlit项目部署方案超详细教程(非Docker版)》Streamlit是一款强大的Python框架,专为机器学习及数据可视化打造,:本文主要介绍Python+St... 目录一、针对 Alibaba Cloud linux/Centos 系统的完整部署方案1. 服务器基础配置(阿里

C++多线程开发环境配置方法

《C++多线程开发环境配置方法》文章详细介绍了如何在Windows上安装MinGW-w64和VSCode,并配置环境变量和编译任务,使用VSCode创建一个C++多线程测试项目,并通过配置tasks.... 目录下载安装 MinGW-w64下载安装VS code创建测试项目配置编译任务创建 tasks.js

在SpringBoot+MyBatis项目中实现MySQL读写分离的实战指南

《在SpringBoot+MyBatis项目中实现MySQL读写分离的实战指南》在SpringBoot和MyBatis项目中实现MySQL读写分离,主要有两种思路:一种是在应用层通过代码和配置手动控制... 目录如何选择实现方案核心实现:应用层手动分离实施中的关键问题与解决方案总结在Spring Boot和