超级解密 | 无人驾驶是如何炼成的

2024-02-08 10:59

本文主要是介绍超级解密 | 无人驾驶是如何炼成的,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:木羊同学

来源:华章计算机(hzbook_jsj)

说到人工智能,有一个不能不提的话题,那就是自动驾驶。市面上号称人工智能的产品很多,但目前最符合我们心中对人工智能印象的,具体来说,就是能够模仿人类甚至替代人类,去完成一些过去只有人类才能完成的工作的技术,也许就是这个自动驾驶。和很多新产品也一样,大家对自动驾驶的态度也是两极化,分为过于信任和太不信任。有些人过于信任自动驾驶,打开自动驾驶自己就敢玩手机或者睡觉,这已经出了几次人命事故。有些人又太不信任自动驾驶,觉得都是商家的噱头,买了新车连自动泊车入位功能也不太敢尝试。

那自动驾驶到底能干什么呢?

这就要从自动驾驶的“天梯”说起了。对新兴技术或者对汽车感兴趣的朋友,一定都看过这么一条新闻,说特斯拉的Autopilot已经具备Level 2,也有称为L2级的自动驾驶能力。如果不了解自动驾驶的天梯,可能很难完全读明白这条新闻。美国汽车工程学会(SAE)给自动驾驶按水平不同分了六个等级,等级越高自动驾驶的水平越高,最低是Level 0,表示完全没有自动驾驶的能力,最高是Level 5,表示有完全的自动驾驶能力,司机可以坐在驾驶位上安心看书,或者干脆就不再需要驾驶位了。

现在市场上售卖的无人驾驶功能都到了Level 几的水平了呢?前些年业界一度很乐观,关注点已经发散到取消驾驶座以后,应该改成麻将桌还是火锅台了。但现实很骨感——经过一段时间的实践以后,特别是无人驾驶出现了几次翻车(是字面意义上的“翻车”)以后,大家的头脑逐渐冷静了下来,目前各个无人驾驶的巨头也基本达成了一个共识,认为Level 5实现难度非常高,要真正达到还需要很长的时间,可以肯定最近几年是不可能用无人驾驶代替考驾照了。

当然了,事情也并非两个极端,虽然无人驾驶距离能够让司机下岗还有很长的路要走,但当前也并非只是噱头毫无进展。研发能够适应各种复杂路况的无人驾驶当然很难,但也做数学难题一样,可以先加一点背景限制条件来简化问题。现在一些具体的应用场景中,无人驾驶确实已经能够达到让司机“放开双手”的水平,譬如现在已经推出了能够在厂区、园区内行驶的无人驾驶公交车,以及能够在特定路段行驶的无人驾驶出租车等等。

按照SAE对无人驾驶的分级,目前市面的各类无人驾驶,包括名气很大的特斯拉的Autopilot,基本还处于Level 2和Level 3的水平,也就是部分自动驾驶和有条件自动驾驶,读起来很拗口,用大白话来说就是能够帮助司机,但不能够替代司机的意思。我国三部委颁布的《智能网联汽车道路测试管理规范(试行)》也作出要求,测试驾驶人应始终处于测试车辆的驾驶座位上、始终监控车辆运行状态及周围环境,随时准备接管车辆。前面提到的这些已经上路的无人驾驶公交和无人驾驶出租车,在实际运行中通常都还要配备一到两名安全员,可能和大家想象中“驾驶座上没有人,只有方向盘在空转”的场景略有出入。

有些智能驾驶系统还担心司机过于迷信“无人驾驶”而分心走神,还专门设置了一系列检查司机有没有专心开车的机制,包括检测司机的双手是不是放在方向盘上,以及检测司机的眼睛究竟是盯着行车前方还是在看其他地方。

无人驾驶当前可以说是冰火两重天,每每新产品让人眼前一亮,感觉成功就在眼前,而新事故又让人忧心忡忡,甚至怀疑这条路到底能不能走通。总的来说,无人驾驶作为人工智能技术的典型代表,同样也和很多已经尝试落地的人工智能产品一样,是希望与挑战并存。

我还清楚记得第一次搭乘无人驾驶汽车,虽然分别列坐驾驶座和副驾驶的两位彪形大汉破坏了一点科幻感,但是看着无人操控的方向盘自己旋转,遇到红灯自己刹车,突然出现了行人车辆还懂得自己避让,我仍然像体验了一场大型魔术一样,产生了难以形容的震撼,迫不及待想掀开魔术幕布一窥背后的奥秘。

那无人驾驶是怎么实现的呢?

无人驾驶是个非常前沿的研究方向,新闻不少,但系统性介绍这门技术的书并不多,而且寥寥数本当中,大部分还都是科普性质的,缺乏理论知识层面的介绍,难以深入了解背后原理。有这方面需要的同学,我推荐《智能驾驶技术:路径规划与导航控制》

这是一本硬核的书,读完这本书,你会对无人驾驶的完整流程能够有一个清晰的了解。以下内容是我读完《智能驾驶技术:路径规划与导航控制》以后,自己的理解归纳:

要实现无人驾驶,需要准备三件宝物,高精度地图、传感器和车辆控制系统。地图一这项好理解,无人驾驶也好,有人驾驶也好,最终都是把车子从起始地开到目的地,关键就是要“认路”。过程我们都很熟悉了,需要借助地图导航。无人驾驶也同样需要地图导航,但是,无人驾驶使用的地图和我们普通的导航地图不太一样,是高精度地图。

有什么不同呢,回想一下,我们的导航地图主要是标识了各种地点,也就是地理信息,但是对于行车相关的信息,譬如交通灯、交叉路、车道规则和道路水平等等,大多是缺乏的。高精度地图一方面对准确性要求更高,通常需要结合GPS、遥感影像等等测量仪器的结果绘制。另一方面是补充了这些行车信息,甚至对于特殊的车道还做了细致的划分,譬如路口转弯、匝道、小路,都作了分别的标识。高精度地图需要包含这么多信息,制作成本当然很高,但无人驾驶有了高精度地图,认路就容易的多了,实时计算要求也一下下降很多。

无人驾驶的第二件宝物就是传感器。传感器应该无人驾驶在外形上的标志,现在无人驾驶的车辆,一般都会戴一顶高高的“帽子”,这顶“帽子”就是一种传感器。人类开车需要眼观六路耳听八方,无人驾驶想开车同样也需要耳目,传感器就是无人驾驶的耳目。

有人可能会不太理解,为什么有了高精度雷达还需要传感器呢?在真实环境中开车和游戏里不一样,是不能够“背板”的,行车路上会出现各种意想不到的障碍物需要实时观察,这里的障碍物不仅指狭义的路障,还包括前方出现的行人,和后方突然加速的车辆等等。哪怕是最简单的红绿灯,我知道这里有红绿灯,那现在究竟是红灯还是绿灯,我该继续行车还是赶紧刹车呢,这都需要通过传感器观察情况。新手司机上路应该都有一个感觉,就是忙乱,要观察的东西太多,人尤如此,更遑论无人驾驶。为了准确捕捉各种环境信息,无人驾驶使用了多种的传感器来捕捉各类环境信息,包括高清摄像头、红外传感器、激光雷达、毫米波雷达等等,能够捕捉的光信号不仅限于可见光,而且具备360度环视视觉。应该说,在环境信息捕捉方面,无人驾驶所具备的能力已经超过了人类。

最后一项是最核心的一项,也是最难的一项,就是这个车辆驾驶系统。准确来说,车辆驾驶系统分为软件和硬件两个部分,无人驾驶的车辆首先需要对车辆进行硬件改造,这应该很好理解,你必须得让无人驾驶系统能够控制油门、刹车和方向盘,然后才能谈无人驾驶对吧。这是硬件层面的车辆驾驶系统,在软件层面,就是无人驾驶的“大脑”了。大脑是关键,前面的地图、耳目再厉害,也得需要有个厉害的大脑才能真正用起来。具体来说就是各种各样的算法,这一部分涉及到很多具体的专业知识,可以细读《智能驾驶技术:路径规划与导航控制》,这里只提一提其中有两个的问题我觉得十分有趣。

第一个问题就是如何训练。无人驾驶依赖人工智能技术,会从各种机器学习、深度学习、深度强化学习的模型中挑选。要使用这些模型,都有一个必经环节,那就是训练,而训练是需要试错的。读过我写的那本《机器学习算法的数学解析与Python实现》的同学都知道,训练的过程就是不断减少错误的过程,这在别的地方没有问题,但是在无人驾驶这里问题就复杂了,应该没谁希望哪天街上会突然出现一辆发了疯一样的无人驾驶汽车,就算你告诉我模型训练都有这么个过程也不行。那这个问题是怎么解决的呢?用仿真环境,无人驾驶是在仿真环境中不断学习进化,等训练成了真正意义上的“老司机”才能真正开车上路。

第二个问题叫乘坐体验,这是个很有意思的问题。我们都知道,开车不仅仅要考虑开车,还要考虑乘车。有一种车技烂,不是把车开到河里去,而是开车能把自己给开晕车了,不过,这个问题归为驾驶问题当然可以,不归为驾驶问题当然也可以。无人驾驶是把这个问题纳入了考虑,首先就需要考虑另一个问题:如何形式化的问题。乘坐体验是一种感受,非常主观,但要使用数学工具解决这个问题,首先就必须要将问题形式化。这个问题简单来说,就是我们人的主观体验,真的可以用莫得感情的数学公式来表达吗?无人驾驶的研究者回答是:可以的。譬如说刹车,遇到突发情况当然要刹车,但如果刹车太硬太急,乘客又会很容易觉得恶心。这是一对矛盾,而这对矛盾完全可以用数学公式来描述,再进而找到最优解。具体的内容还有很多,相关数学公式和介绍可以阅读《智能驾驶技术:路径规划与导航控制》的“基于车辆约束的最优轨迹”。

关于作者

莫凡,网名木羊同学。娱乐向机器学习解说选手,《机器学习算法的数学解析与Python实现》作者,前沿技术发展观潮者,擅长高冷技术的“白菜化”解说,微信公众号“睡前机器学习”,个人知乎号“木羊”。

推荐阅读

 

01

《智能驾驶技术:路径规划与导航控制》

扫码了解详情并购买

推荐语:承担两期中车时代电动智能客车“智能驾驶决策控制系统”开发任务,获批湖南省颁发的第一辆智能驾驶公交车牌照的精心之作!基于实例,深度介绍了智能驾驶的整套流程,并提供完整的仿真系统搭建建议。

 

 

02

《机器学习算法的数学解析与Python实现》

扫码了解详情并购买

推荐语:如果你之前不太了解机器学习,现在想要了解机器学习的主流算法和原理,并希望快速、清晰地建立对机器学习的“大局观”,但是担心一上来就被各种艰涩的数学公式“揍”得眼冒金星,那这本书就是你想要的。

 

更多精彩回顾书讯 | 7月书讯(下)| 宝藏新书助你“乘风破浪”书讯 | 7月书讯 (上)| 宝藏新书助你“乘风破浪”上新 | 国内首本CTF赛事技术解析书籍,五年之约,兑现了
书单 | 怎样成为一名真正的数据分析师?这份书单就是答案干货 | 【直播回放&PPT】复旦大学邱锡鹏教授:如何学习深度学习收藏 | 数据库有哪些分类?应该怎样选择?终于有人讲明白了

这篇关于超级解密 | 无人驾驶是如何炼成的的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/690813

相关文章

Java 后端接口入参 - 联合前端VUE 使用AES完成入参出参加密解密

加密效果: 解密后的数据就是正常数据: 后端:使用的是spring-cloud框架,在gateway模块进行操作 <dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>30.0-jre</version></dependency> 编写一个AES加密

【C#生态园】解密C# Web框架:选对框架,事半功倍

探秘C# Web开发利器:六款高性能框架与库详细解读 前言 在当今的软件开发领域,C#作为一种多用途编程语言,被广泛应用于各种类型的应用程序开发。特别是在Web开发领域,有许多优秀的C# Web框架和库,本文将对其中一些备受关注的框架进行介绍和比较,帮助读者更好地选择适合其项目需求的工具。 欢迎订阅专栏:C#生态园 文章目录 探秘C# Web开发利器:六款高性能框架与库详细解

超级 密码加密 解密 源码,支持表情,符号,数字,字母,加密

超级 密码加密 解密 源码,支持表情,符号,数字,字母,加密 可以将表情,动物,水果,表情,手势,猫语,兽语,狗语,爱语,符号,数字,字母,加密和解密 可以将文字、字母、数字、代码、标点符号等内容转换成新的文字形式,通过简单的文字以不同的排列顺序来表达不同的内容 源码截图: https://www.httple.net/152649.html

【超级干货】2天速成PyTorch深度学习入门教程,缓解研究生焦虑

3、cnn基础 卷积神经网络 输入层 —输入图片矩阵 输入层一般是 RGB 图像或单通道的灰度图像,图片像素值在[0,255],可以用矩阵表示图片 卷积层 —特征提取 人通过特征进行图像识别,根据左图直的笔画判断X,右图曲的笔画判断圆 卷积操作 激活层 —加强特征 池化层 —压缩数据 全连接层 —进行分类 输出层 —输出分类概率 4、基于LeNet

详解BitLocker模式及加密数据和解密方法及无法访问解决之道

BitLocker主要有两种工作模式:TPM模式和U盘模式,同时为了实现更高程度的安全,我们还可以同时启用这两种模式。 BitLocker 自动设备加密在全新安装体验 (OOBE) 期间启动。 但是,只有在用户使用 Microsoft 帐户或 Azure Active Directory 帐户登录后,才会启用(提供)保护。 在此之前,保护已暂停,数据不受保护。 使用本地帐户不会启用 BitLoc

RC4加密解密算法123

RC4是一种对称密码算法,它属于对称密码算法中的序列密码(streamcipher,也称为流密码),它是可变密钥长度,面向字节操作的流密码。 RC4是流密码streamcipher中的一种,为序列密码。RC4加密算法是Ron Rivest在1987年设计出的密钥长度可变的加密算法簇。起初该算法是商业机密,直到1994年,它才公诸于众。由于RC4具有算法简单,运算速度快,软硬件实现都

一款云端测试平台是如何炼成的?

有一款应用,它具备了让人眼前一亮的创意和一个非常专业的初创团队,所有人都认为成功离它只有一步之遥。但在上线一两天内竟由于用户流量太大,导致应用频繁宕机,而不得不暂停服务。 当技术团队通宵达旦的查找问题时,却发现是当初设计的架构导致了今天的严重故障。在无奈的回炉再造后,新推出的版本不仅后台架构变了,UI 也变了,造成了非常大的人力和时间的浪费。甚至可能在回炉期间错过转瞬即逝的市场先机。 以上这个

印度再现超级大片,豪华阵容加顶级特效

最近,印度影坛再次掀起了风潮,一部名为《毗湿奴降临》的神话大片强势登陆各大影院,上映首周票房就飙升至105亿卢比,成功占据了票房榜首的位置。之后,这部电影也在北美上映,海外市场的表现同样不俗,收获了相当亮眼的票房成绩。作为一部印度神话科幻大片,《毗湿奴降临》不仅在本土大火,在国际市场上也引发了不小的关注。 《毗湿奴降临》由印度著名导演纳格·阿什温执导,卡司阵容极其豪华,集结了迪皮卡·帕度柯妮

解密FSMN-Monophone VAD模型:语音活动检测的未来

在现代语音处理领域,语音活动检测(Voice Activity Detection, VAD)是一个关键技术,广泛应用于语音识别、语音编码和语音增强等任务。随着深度学习的快速发展,传统的VAD方法逐渐被更为先进的模型所取代。本文将深入探讨FSMN-Monophone VAD模型的原理、优势及其实际应用案例,帮助读者更好地理解这一前沿技术。 一、什么是FSMN-Monophone VAD? FS