GraphicsMagick 的 OpenCL 开发记录(三十三)

2024-02-08 10:20

本文主要是介绍GraphicsMagick 的 OpenCL 开发记录(三十三),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 如何写`ScaleImage()`的硬件加速函数(七)

<2022-04-28 周四>

如何写ScaleImage()的硬件加速函数(七)

其实“如何写ScaleImage()的硬件加速函数(六)”的实现就是一个ResizeHorizontalFilter()y改成y / xFactor的精简版,并不是ScaleImage()的硬件加速函数。虽然它不是,但至少省掉了ResizeVerticalFilter()的调用,速度上更快了。

但是目前发现的问题还是竖条纹,连续多次缩小一倍,最终图片被黑色竖条纹全部覆盖住,不断缩小或者放大,右侧会出现密集竖条纹,等等等的问题啦。

经过分析,黑色竖纹的产生原因是因为kernel函数ScaleFilter()的最内层的循环没有执行,导致将初始值0.0f赋进了目标地址。

for (unsigned int i = startStep; i < stopStep; i++, cacheIndex++)
{float4 cp = (float4)0.0f;__local CLQuantum* p = inputImageCache + (cacheIndex * 4);cp.x = (float)*(p);cp.y = (float)*(p + 1);cp.z = (float)*(p + 2);cp.w = (float)*(p + 3);filteredPixel += cp;
}

可以这样解决:

STRINGIFY(__kernel __attribute__((reqd_work_group_size(256, 1, 1)))void ScaleFilter(const __global CLQuantum* inputImage, const unsigned int matte_or_cmyk,const unsigned int inputColumns, const unsigned int inputRows, __global CLQuantum* filteredImage,const unsigned int filteredColumns, const unsigned int filteredRows,const float resizeFilterScale,__local CLQuantum* inputImageCache, const int numCachedPixels,const unsigned int pixelPerWorkgroup, const unsigned int pixelChunkSize,__local float4* outputPixelCache, __local float* densityCache, __local float* gammaCache)
{// calculate the range of resized image pixels computed by this workgroupconst unsigned int startX = get_group_id(0) * pixelPerWorkgroup;const unsigned int stopX = MagickMin(startX + pixelPerWorkgroup, filteredColumns);const unsigned int actualNumPixelToCompute = stopX - startX;float xFactor = (float)filteredColumns / inputColumns;// calculate the range of input image pixels to cacheconst int cacheRangeStartX = MagickMax((int)((startX + 0.5f) / xFactor), (int)(0));const int cacheRangeEndX = MagickMin((int)(cacheRangeStartX + numCachedPixels), (int)inputColumns);// cache the input pixels into local memoryconst unsigned int y = get_global_id(1);const unsigned int pos = getPixelIndex(4, inputColumns, cacheRangeStartX, y / xFactor);const unsigned int num_elements = (cacheRangeEndX - cacheRangeStartX) * 4;event_t e = async_work_group_copy(inputImageCache, inputImage + pos, num_elements, 0);wait_group_events(1, &e);unsigned int totalNumChunks = (actualNumPixelToCompute + pixelChunkSize - 1) / pixelChunkSize;for (unsigned int chunk = 0; chunk < totalNumChunks; chunk++){const unsigned int chunkStartX = startX + chunk * pixelChunkSize;const unsigned int chunkStopX = MagickMin(chunkStartX + pixelChunkSize, stopX);const unsigned int actualNumPixelInThisChunk = chunkStopX - chunkStartX;// determine which resized pixel computed by this workitemconst unsigned int itemID = get_local_id(0);const unsigned int numItems = getNumWorkItemsPerPixel(actualNumPixelInThisChunk, get_local_size(0));const int pixelIndex = pixelToCompute(itemID, actualNumPixelInThisChunk, get_local_size(0));float4 filteredPixel = (float4)0.0f;// -1 means this workitem doesn't participate in the computationif (pixelIndex != -1){// x coordinated of the resized pixel computed by this workitemconst int x = chunkStartX + pixelIndex;// calculate how many steps required for this pixelconst float bisect = (x + 0.5) / xFactor + MagickEpsilon;const unsigned int start = (unsigned int)MagickMax(bisect, 0.0f);const unsigned int stop = (unsigned int)MagickMin(bisect + 1, (float)inputColumns);const unsigned int n = stop - start;// calculate how many steps this workitem will contributeunsigned int numStepsPerWorkItem = n / numItems;numStepsPerWorkItem += ((numItems * numStepsPerWorkItem) == n ? 0 : 1);const unsigned int startStep = (itemID % numItems) * numStepsPerWorkItem;if (startStep < n){const unsigned int stopStep = MagickMin(startStep + numStepsPerWorkItem, n);unsigned int cacheIndex = start + startStep - cacheRangeStartX;for (unsigned int i = startStep; i < stopStep; i++, cacheIndex++){float4 cp = (float4)0.0f;__local CLQuantum* p = inputImageCache + (cacheIndex * 4);cp.x = (float)*(p);cp.y = (float)*(p + 1);cp.z = (float)*(p + 2);cp.w = (float)*(p + 3);filteredPixel += cp;}}}if (itemID < actualNumPixelInThisChunk) {outputPixelCache[itemID] = (float4)0.0f;}barrier(CLK_LOCAL_MEM_FENCE);for (unsigned int i = 0; i < numItems; i++) {if (pixelIndex != -1) {if (itemID % numItems == i) {outputPixelCache[pixelIndex] += filteredPixel;}}barrier(CLK_LOCAL_MEM_FENCE);}if (itemID < actualNumPixelInThisChunk){float4 filteredPixel = outputPixelCache[itemID];WriteAllChannels(filteredImage, 4, filteredColumns, chunkStartX + itemID, y, filteredPixel);}}
}
)

测试了一下性能,感觉提升不少(原图缩小一半,共三次操作,原图连续放大一倍两次,共三次操作):

ScaleImage()加速版本:

20220428104719 0:3.229821  1.672 11552 opencl.c AcquireOpenCLKernel 744 Accelerate Event Using kernel: ScaleFilter
20220428104719 0:3.230185  1.672 11552 resize.c ScaleImage 1764 Accelerate Event accelerate scale: 1360
20220428104725 0:9.628057  1.875 11552 opencl.c AcquireOpenCLKernel 744 Accelerate Event Using kernel: ScaleFilter
20220428104725 0:9.628288  1.875 11552 resize.c ScaleImage 1764 Accelerate Event accelerate scale: 0
20220428104732 0:16.078872 2.234 11552 opencl.c AcquireOpenCLKernel 744 Accelerate Event Using kernel: ScaleFilter
20220428104732 0:16.079057 2.234 11552 resize.c ScaleImage 1764 Accelerate Event accelerate scale: 0
20220428104740 0:24.253815 2.484 11552 opencl.c AcquireOpenCLKernel 744 Accelerate Event Using kernel: ScaleFilter
20220428104740 0:24.254118 2.484 11552 resize.c ScaleImage 1764 Accelerate Event accelerate scale: 0
20220428104749 0:33.888819 2.875 11552 opencl.c AcquireOpenCLKernel 744 Accelerate Event Using kernel: ScaleFilter
20220428104749 0:33.889007 2.875 11552 resize.c ScaleImage 1764 Accelerate Event accelerate scale: 31
20220428104752 0:36.173104 3.047 11552 opencl.c AcquireOpenCLKernel 744 Accelerate Event Using kernel: ScaleFilter
20220428104752 0:36.173301 3.047 11552 resize.c ScaleImage 1764 Accelerate Event accelerate scale: 156
20220428104800 0:44.287153 3.469 11552 opencl.c AcquireOpenCLKernel 744 Accelerate Event Using kernel: ScaleFilter
20220428104800 0:44.287372 3.469 11552 resize.c ScaleImage 1764 Accelerate Event accelerate scale: 47
20220428104801 0:45.546271 3.656 11552 opencl.c AcquireOpenCLKernel 744 Accelerate Event Using kernel: ScaleFilter
20220428104801 0:45.546588 3.656 11552 resize.c ScaleImage 1764 Accelerate Event accelerate scale: 140
20220428104806 0:49.973027 4.047 11552 opencl.c AcquireOpenCLKernel 744 Accelerate Event Using kernel: ScaleFilter
20220428104806 0:49.973217 4.047 11552 resize.c ScaleImage 1764 Accelerate Event accelerate scale: 31
20220428104806 0:50.640522 4.250 11552 opencl.c AcquireOpenCLKernel 744 Accelerate Event Using kernel: ScaleFilter
20220428104806 0:50.640730 4.250 11552 resize.c ScaleImage 1764 Accelerate Event accelerate scale: 141

ScaleImage()原先版本:

20220428104934 0:1.982873  0.266 10052 resize.c ScaleImage 1770 Accelerate Event AccelerateScaleImage null
20220428104934 0:2.040677  0.328 10052 resize.c ScaleImage 2116 Accelerate Event normal scale: 63
20220428104940 0:7.854823  0.578 10052 resize.c ScaleImage 1770 Accelerate Event AccelerateScaleImage null
20220428104940 0:7.913365  0.625 10052 resize.c ScaleImage 2116 Accelerate Event normal scale: 47
20220428104944 0:11.896725 0.875 10052 resize.c ScaleImage 1770 Accelerate Event AccelerateScaleImage null
20220428104944 0:11.956722 0.938 10052 resize.c ScaleImage 2116 Accelerate Event normal scale: 63
20220428104951 0:18.070817 1.219 10052 resize.c ScaleImage 1770 Accelerate Event AccelerateScaleImage null
20220428104951 0:18.378405 1.516 10052 resize.c ScaleImage 2116 Accelerate Event normal scale: 297
20220428104952 0:19.394056 1.531 10052 resize.c ScaleImage 1770 Accelerate Event AccelerateScaleImage null
20220428104953 0:20.634341 2.781 10052 resize.c ScaleImage 2116 Accelerate Event normal scale: 1250
20220428104958 0:25.534006 3.063 10052 resize.c ScaleImage 1770 Accelerate Event AccelerateScaleImage null
20220428104958 0:25.836584 3.375 10052 resize.c ScaleImage 2116 Accelerate Event normal scale: 312
20220428104959 0:26.729520 3.406 10052 resize.c ScaleImage 1770 Accelerate Event AccelerateScaleImage null
20220428105000 0:27.930533 4.609 10052 resize.c ScaleImage 2116 Accelerate Event normal scale: 1203
20220428105011 0:38.879392 5.438 10052 resize.c ScaleImage 1770 Accelerate Event AccelerateScaleImage null
20220428105012 0:39.210382 5.766 10052 resize.c ScaleImage 2116 Accelerate Event normal scale: 328
20220428105012 0:39.872525 5.797 10052 resize.c ScaleImage 1770 Accelerate Event AccelerateScaleImage null
20220428105014 0:41.176969 7.094 10052 resize.c ScaleImage 2116 Accelerate Event normal scale: 1297

这篇关于GraphicsMagick 的 OpenCL 开发记录(三十三)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/690726

相关文章

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Python中对FFmpeg封装开发库FFmpy详解

《Python中对FFmpeg封装开发库FFmpy详解》:本文主要介绍Python中对FFmpeg封装开发库FFmpy,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、FFmpy简介与安装1.1 FFmpy概述1.2 安装方法二、FFmpy核心类与方法2.1 FF

k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)

《k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)》本文记录在K8s上运行的MySQL/MariaDB备份方案,通过工具容器执行mysqldump,结合定时任务实... 目录前言一、获取需要备份的数据库的信息二、备份步骤1.准备工作(X86)1.准备工作(arm)2.手

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.

统一返回JsonResult踩坑的记录

《统一返回JsonResult踩坑的记录》:本文主要介绍统一返回JsonResult踩坑的记录,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录统一返回jsonResult踩坑定义了一个统一返回类在使用时,JsonResult没有get/set方法时响应总结统一返回