GraphicsMagick 的 OpenCL 开发记录(三十三)

2024-02-08 10:20

本文主要是介绍GraphicsMagick 的 OpenCL 开发记录(三十三),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 如何写`ScaleImage()`的硬件加速函数(七)

<2022-04-28 周四>

如何写ScaleImage()的硬件加速函数(七)

其实“如何写ScaleImage()的硬件加速函数(六)”的实现就是一个ResizeHorizontalFilter()y改成y / xFactor的精简版,并不是ScaleImage()的硬件加速函数。虽然它不是,但至少省掉了ResizeVerticalFilter()的调用,速度上更快了。

但是目前发现的问题还是竖条纹,连续多次缩小一倍,最终图片被黑色竖条纹全部覆盖住,不断缩小或者放大,右侧会出现密集竖条纹,等等等的问题啦。

经过分析,黑色竖纹的产生原因是因为kernel函数ScaleFilter()的最内层的循环没有执行,导致将初始值0.0f赋进了目标地址。

for (unsigned int i = startStep; i < stopStep; i++, cacheIndex++)
{float4 cp = (float4)0.0f;__local CLQuantum* p = inputImageCache + (cacheIndex * 4);cp.x = (float)*(p);cp.y = (float)*(p + 1);cp.z = (float)*(p + 2);cp.w = (float)*(p + 3);filteredPixel += cp;
}

可以这样解决:

STRINGIFY(__kernel __attribute__((reqd_work_group_size(256, 1, 1)))void ScaleFilter(const __global CLQuantum* inputImage, const unsigned int matte_or_cmyk,const unsigned int inputColumns, const unsigned int inputRows, __global CLQuantum* filteredImage,const unsigned int filteredColumns, const unsigned int filteredRows,const float resizeFilterScale,__local CLQuantum* inputImageCache, const int numCachedPixels,const unsigned int pixelPerWorkgroup, const unsigned int pixelChunkSize,__local float4* outputPixelCache, __local float* densityCache, __local float* gammaCache)
{// calculate the range of resized image pixels computed by this workgroupconst unsigned int startX = get_group_id(0) * pixelPerWorkgroup;const unsigned int stopX = MagickMin(startX + pixelPerWorkgroup, filteredColumns);const unsigned int actualNumPixelToCompute = stopX - startX;float xFactor = (float)filteredColumns / inputColumns;// calculate the range of input image pixels to cacheconst int cacheRangeStartX = MagickMax((int)((startX + 0.5f) / xFactor), (int)(0));const int cacheRangeEndX = MagickMin((int)(cacheRangeStartX + numCachedPixels), (int)inputColumns);// cache the input pixels into local memoryconst unsigned int y = get_global_id(1);const unsigned int pos = getPixelIndex(4, inputColumns, cacheRangeStartX, y / xFactor);const unsigned int num_elements = (cacheRangeEndX - cacheRangeStartX) * 4;event_t e = async_work_group_copy(inputImageCache, inputImage + pos, num_elements, 0);wait_group_events(1, &e);unsigned int totalNumChunks = (actualNumPixelToCompute + pixelChunkSize - 1) / pixelChunkSize;for (unsigned int chunk = 0; chunk < totalNumChunks; chunk++){const unsigned int chunkStartX = startX + chunk * pixelChunkSize;const unsigned int chunkStopX = MagickMin(chunkStartX + pixelChunkSize, stopX);const unsigned int actualNumPixelInThisChunk = chunkStopX - chunkStartX;// determine which resized pixel computed by this workitemconst unsigned int itemID = get_local_id(0);const unsigned int numItems = getNumWorkItemsPerPixel(actualNumPixelInThisChunk, get_local_size(0));const int pixelIndex = pixelToCompute(itemID, actualNumPixelInThisChunk, get_local_size(0));float4 filteredPixel = (float4)0.0f;// -1 means this workitem doesn't participate in the computationif (pixelIndex != -1){// x coordinated of the resized pixel computed by this workitemconst int x = chunkStartX + pixelIndex;// calculate how many steps required for this pixelconst float bisect = (x + 0.5) / xFactor + MagickEpsilon;const unsigned int start = (unsigned int)MagickMax(bisect, 0.0f);const unsigned int stop = (unsigned int)MagickMin(bisect + 1, (float)inputColumns);const unsigned int n = stop - start;// calculate how many steps this workitem will contributeunsigned int numStepsPerWorkItem = n / numItems;numStepsPerWorkItem += ((numItems * numStepsPerWorkItem) == n ? 0 : 1);const unsigned int startStep = (itemID % numItems) * numStepsPerWorkItem;if (startStep < n){const unsigned int stopStep = MagickMin(startStep + numStepsPerWorkItem, n);unsigned int cacheIndex = start + startStep - cacheRangeStartX;for (unsigned int i = startStep; i < stopStep; i++, cacheIndex++){float4 cp = (float4)0.0f;__local CLQuantum* p = inputImageCache + (cacheIndex * 4);cp.x = (float)*(p);cp.y = (float)*(p + 1);cp.z = (float)*(p + 2);cp.w = (float)*(p + 3);filteredPixel += cp;}}}if (itemID < actualNumPixelInThisChunk) {outputPixelCache[itemID] = (float4)0.0f;}barrier(CLK_LOCAL_MEM_FENCE);for (unsigned int i = 0; i < numItems; i++) {if (pixelIndex != -1) {if (itemID % numItems == i) {outputPixelCache[pixelIndex] += filteredPixel;}}barrier(CLK_LOCAL_MEM_FENCE);}if (itemID < actualNumPixelInThisChunk){float4 filteredPixel = outputPixelCache[itemID];WriteAllChannels(filteredImage, 4, filteredColumns, chunkStartX + itemID, y, filteredPixel);}}
}
)

测试了一下性能,感觉提升不少(原图缩小一半,共三次操作,原图连续放大一倍两次,共三次操作):

ScaleImage()加速版本:

20220428104719 0:3.229821  1.672 11552 opencl.c AcquireOpenCLKernel 744 Accelerate Event Using kernel: ScaleFilter
20220428104719 0:3.230185  1.672 11552 resize.c ScaleImage 1764 Accelerate Event accelerate scale: 1360
20220428104725 0:9.628057  1.875 11552 opencl.c AcquireOpenCLKernel 744 Accelerate Event Using kernel: ScaleFilter
20220428104725 0:9.628288  1.875 11552 resize.c ScaleImage 1764 Accelerate Event accelerate scale: 0
20220428104732 0:16.078872 2.234 11552 opencl.c AcquireOpenCLKernel 744 Accelerate Event Using kernel: ScaleFilter
20220428104732 0:16.079057 2.234 11552 resize.c ScaleImage 1764 Accelerate Event accelerate scale: 0
20220428104740 0:24.253815 2.484 11552 opencl.c AcquireOpenCLKernel 744 Accelerate Event Using kernel: ScaleFilter
20220428104740 0:24.254118 2.484 11552 resize.c ScaleImage 1764 Accelerate Event accelerate scale: 0
20220428104749 0:33.888819 2.875 11552 opencl.c AcquireOpenCLKernel 744 Accelerate Event Using kernel: ScaleFilter
20220428104749 0:33.889007 2.875 11552 resize.c ScaleImage 1764 Accelerate Event accelerate scale: 31
20220428104752 0:36.173104 3.047 11552 opencl.c AcquireOpenCLKernel 744 Accelerate Event Using kernel: ScaleFilter
20220428104752 0:36.173301 3.047 11552 resize.c ScaleImage 1764 Accelerate Event accelerate scale: 156
20220428104800 0:44.287153 3.469 11552 opencl.c AcquireOpenCLKernel 744 Accelerate Event Using kernel: ScaleFilter
20220428104800 0:44.287372 3.469 11552 resize.c ScaleImage 1764 Accelerate Event accelerate scale: 47
20220428104801 0:45.546271 3.656 11552 opencl.c AcquireOpenCLKernel 744 Accelerate Event Using kernel: ScaleFilter
20220428104801 0:45.546588 3.656 11552 resize.c ScaleImage 1764 Accelerate Event accelerate scale: 140
20220428104806 0:49.973027 4.047 11552 opencl.c AcquireOpenCLKernel 744 Accelerate Event Using kernel: ScaleFilter
20220428104806 0:49.973217 4.047 11552 resize.c ScaleImage 1764 Accelerate Event accelerate scale: 31
20220428104806 0:50.640522 4.250 11552 opencl.c AcquireOpenCLKernel 744 Accelerate Event Using kernel: ScaleFilter
20220428104806 0:50.640730 4.250 11552 resize.c ScaleImage 1764 Accelerate Event accelerate scale: 141

ScaleImage()原先版本:

20220428104934 0:1.982873  0.266 10052 resize.c ScaleImage 1770 Accelerate Event AccelerateScaleImage null
20220428104934 0:2.040677  0.328 10052 resize.c ScaleImage 2116 Accelerate Event normal scale: 63
20220428104940 0:7.854823  0.578 10052 resize.c ScaleImage 1770 Accelerate Event AccelerateScaleImage null
20220428104940 0:7.913365  0.625 10052 resize.c ScaleImage 2116 Accelerate Event normal scale: 47
20220428104944 0:11.896725 0.875 10052 resize.c ScaleImage 1770 Accelerate Event AccelerateScaleImage null
20220428104944 0:11.956722 0.938 10052 resize.c ScaleImage 2116 Accelerate Event normal scale: 63
20220428104951 0:18.070817 1.219 10052 resize.c ScaleImage 1770 Accelerate Event AccelerateScaleImage null
20220428104951 0:18.378405 1.516 10052 resize.c ScaleImage 2116 Accelerate Event normal scale: 297
20220428104952 0:19.394056 1.531 10052 resize.c ScaleImage 1770 Accelerate Event AccelerateScaleImage null
20220428104953 0:20.634341 2.781 10052 resize.c ScaleImage 2116 Accelerate Event normal scale: 1250
20220428104958 0:25.534006 3.063 10052 resize.c ScaleImage 1770 Accelerate Event AccelerateScaleImage null
20220428104958 0:25.836584 3.375 10052 resize.c ScaleImage 2116 Accelerate Event normal scale: 312
20220428104959 0:26.729520 3.406 10052 resize.c ScaleImage 1770 Accelerate Event AccelerateScaleImage null
20220428105000 0:27.930533 4.609 10052 resize.c ScaleImage 2116 Accelerate Event normal scale: 1203
20220428105011 0:38.879392 5.438 10052 resize.c ScaleImage 1770 Accelerate Event AccelerateScaleImage null
20220428105012 0:39.210382 5.766 10052 resize.c ScaleImage 2116 Accelerate Event normal scale: 328
20220428105012 0:39.872525 5.797 10052 resize.c ScaleImage 1770 Accelerate Event AccelerateScaleImage null
20220428105014 0:41.176969 7.094 10052 resize.c ScaleImage 2116 Accelerate Event normal scale: 1297

这篇关于GraphicsMagick 的 OpenCL 开发记录(三十三)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/690726

相关文章

使用DeepSeek API 结合VSCode提升开发效率

《使用DeepSeekAPI结合VSCode提升开发效率》:本文主要介绍DeepSeekAPI与VisualStudioCode(VSCode)结合使用,以提升软件开发效率,具有一定的参考价值... 目录引言准备工作安装必要的 VSCode 扩展配置 DeepSeek API1. 创建 API 请求文件2.

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据

关于rpc长连接与短连接的思考记录

《关于rpc长连接与短连接的思考记录》文章总结了RPC项目中长连接和短连接的处理方式,包括RPC和HTTP的长连接与短连接的区别、TCP的保活机制、客户端与服务器的连接模式及其利弊分析,文章强调了在实... 目录rpc项目中的长连接与短连接的思考什么是rpc项目中的长连接和短连接与tcp和http的长连接短

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

基于Qt开发一个简单的OFD阅读器

《基于Qt开发一个简单的OFD阅读器》这篇文章主要为大家详细介绍了如何使用Qt框架开发一个功能强大且性能优异的OFD阅读器,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 目录摘要引言一、OFD文件格式解析二、文档结构解析三、页面渲染四、用户交互五、性能优化六、示例代码七、未来发展方向八、结论摘要

Servlet中配置和使用过滤器的步骤记录

《Servlet中配置和使用过滤器的步骤记录》:本文主要介绍在Servlet中配置和使用过滤器的方法,包括创建过滤器类、配置过滤器以及在Web应用中使用过滤器等步骤,文中通过代码介绍的非常详细,需... 目录创建过滤器类配置过滤器使用过滤器总结在Servlet中配置和使用过滤器主要包括创建过滤器类、配置过滤

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo