网络流问题求解及Gurobi+Python代码(最大流/最小成本网络流/多商品网络流)

2024-02-08 05:04

本文主要是介绍网络流问题求解及Gurobi+Python代码(最大流/最小成本网络流/多商品网络流),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.最大流问题

1.1 问题描述

1.2 Ford-Fulkerson算法

1.3 Gurobi测试 

2.最小成本网络流问题

2.1 问题描述  

2.2 供应链规划案例

3.多商品网络流问题

3.1 问题描述及模型

3.2 Gurobi测试


Gurobi求解代码:GitHub - bujibujibiuwang/Network-Flow-Problem: 网络流问题

1.最大流问题

1.1 问题描述

最大流问题(Maximum flow problem MFP)描述为一个有向图,包含源节点(source)和汇点(sink),以及连接这些节点的有向边,每条边都有一个容量,表示通过该边的最大流量。问题优化目标是寻找最大流量传输。如下图所示,该网络的最大流为23。

求解最大流问题的方法:

  • Ford-Fulkerson 算法 
  • 求解器

1.2 Ford-Fulkerson算法

  • 定义1

  • 定义2

算法步骤如下:

下面是一个简单例子

1.3 Gurobi测试 

 最大流问题有两个约束:流平衡约束和容量约束,模型描述如下:

在一个简单的例子上使用gurobi求解最大流问题,结果如下图,最大流为20

模型核心代码如下: 

maxflow = gp.Model()
flow = maxflow.addVars(edges.keys(), vtype=GRB.CONTINUOUS)
maxflow.setObjective(flow.sum('*', 't'), GRB.MAXIMIZE)
maxflow.addConstrs(flow[i, j] <= edges[i, j] for i, j in edges.keys())
maxflow.addConstrs(flow.sum('*', i) - flow.sum(i, '*') == 0 for i in points.keys() if i != 's' and i != 't')
maxflow.optimize()

2.最小成本网络流问题

2.1 问题描述  

运输问题,分配问题,转运问题,最短路径,最大流等都属于最小成本网络流问题(Minimum-cost network flow problem MCNFP),在该问题中,有一个有向图表示网络,其中包含一些节点和边,每条边都有一个容量和一个单位费用。网络中有供应点,需求点,中转点等,最小成本网络流问题的目标是找到一种流量分配方案,使得满足需求的同时,总运输成本最小。

2.2 供应链规划案例

参考gurobi官方资源Supply Network Design 1

 供应链网络设计问题可以转化为最小成本网络流问题,具体而言,有6个客户点,4个仓库中心,2个工厂,每个客户点都有已知的需求,客户的需求可以通过仓库或者工厂提供,每个仓库有最大容量限制,每个工厂有最大供应量,已知将产品从工厂运输到仓库、从仓库运输到客户、或从工厂直接运输到客户的成本,要求找到确定满足客户需求的最佳运输方式,同时最大限度地降低运输成本。模型如下:

模型核心代码如下:

"""
(1)决策变量和目标函数
"""
cost_flow = gp.Model()
flow = cost_flow.addVars(list(edges), vtype=GRB.CONTINUOUS, name='x')
cost_flow.setObjective(flow.prod(edges), GRB.MINIMIZE)
"""
(2)约束条件
"""
# factory constraints
cost_flow.addConstrs(flow.sum(i, '*') <= factories[i] for i in factories.keys())
# depots constraints
cost_flow.addConstrs(flow.sum(i, '*') <= depots[i] for i in depots.keys())
# customers constraints
cost_flow.addConstrs(flow.sum('*', i) == customers[i] for i in customers.keys())
# flow constraints
cost_flow.addConstrs(flow.sum('*', i) == flow.sum(i, '*') for i in depots.keys())

求解结果如下: 

Optimal objective  1.985000000e+05

3.多商品网络流问题

3.1 问题描述及模型

多商品流动问题(Multi-commodity flow problem MCFP)是不同源节点和汇节点之间存在多种商品(流动需求)的网络流动问题。模型如下:

3.2 Gurobi测试

 参考multi-commodity-flow

在一个简单的例子上测试,2种商品,5个城市,模型核心代码如下:

"""
(1)变量和目标
"""
multi_commodity = gp.Model()
flow = multi_commodity.addVars(list(cost), vtype=GRB.CONTINUOUS)
multi_commodity.setObjective(flow.prod(cost), GRB.MINIMIZE)
"""
(2)约束条件
"""
# 容量约束
multi_commodity.addConstrs(flow.sum('*', u, v) <= edges[(u, v)] for u, v in edges.keys())
# 流平衡约束
multi_commodity.addConstrs(flow.sum(h, '*', v) + inflow[h, v] == flow.sum(h, v, '*')for h in commodities for v in points.keys())

求解结果如下:

Optimal objective  5.500000000e+03

这篇关于网络流问题求解及Gurobi+Python代码(最大流/最小成本网络流/多商品网络流)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/689976

相关文章

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结