生成函数性质速查表

2024-02-08 02:20
文章标签 函数 生成 性质 速查表

本文主要是介绍生成函数性质速查表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要: 生成函数的性质

【对数据分析、人工智能、金融科技、风控服务感兴趣的同学,欢迎关注我哈,原创文章】
我的网站:潮汐朝夕的生活实验室
我的公众号:潮汐朝夕
我的知乎:潮汐朝夕
我的github:FennelDumplings
我的leetcode:FennelDumplings


生成函数即母函数,有时也叫形式幂级数。是组合数学中的一个重要理论和工具。

生成函数的一个重要线索来自于 18 世纪欧拉对整数分拆问题的研究,其中有了一些生成函数思想的雏形(该项研究同样也是卷积和的思想来源的线索)。

最早提出母函数的是法国数学家拉普拉斯,他在其 1812 年出版的《概率的分析理论》中明确提出“概率生成函数的计算”,书中对欧拉的整数分拆的研究做了延伸。生成函数的理论由此基本建立。

生成函数可以对组合对象进行计数,也可以作为分析工具去求解递归式。求解递归式的过程中,最关键的一步是在递归式的基础上,做各种变形,去凑生成函数的性质,得到生成函数满足的微分方程或函数方程。

下面我们不加证明地罗列普通生成函数和指数生成函数的常用性质,在凑的时候要用到,背是背不下来的,用到的时候可以查。

普通生成函数 (OGF)

OGF 的性质

普通生成函数常用于无标记的组合结构的计数问题。

A ( z ) = ∑ n = 0 ∞ a n z n A(z) = \sum\limits_{n=0}\limits^{\infty}a_{n}z^{n} A(z)=n=0anzn B ( z ) = ∑ n = 0 ∞ b n z n B(z) = \sum\limits_{n=0}\limits^{\infty}b_{n}z^{n} B(z)=n=0bnzn

性质公式
数列的相加 A ( z ) + B ( z ) = ∑ n = 0 ∞ ( a n + b n ) z n A(z) + B(z) = \sum\limits_{n=0}\limits^{\infty}(a_{n} + b_{n})z^{n} A(z)+B(z)=n=0(an+bn)zn
数列的数乘 α A ( z ) = ∑ n = 0 ∞ α a n z n \alpha A(z) = \sum\limits_{n=0}\limits^{\infty}\alpha a_{n}z^{n} αA(z)=n=0αanzn
数列的卷积(OGF的相乘) A ( z ) B ( z ) = ∑ n = 0 ∞ ( ∑ k = 0 n a k b n − k ) z n A(z)B(z) = \sum\limits_{n=0}\limits^{\infty}(\sum\limits_{k=0}\limits^{n}a_{k}b_{n-k})z^{n} A(z)B(z)=n=0(k=0nakbnk)zn
数列的差分 ( 1 − z ) A ( z ) = a 0 + ∑ n = 1 ∞ ( a n − a n − 1 ) z n (1 - z)A(z) = a_{0} + \sum\limits_{n=1}\limits^{\infty}(a_{n} - a_{n-1})z^{n} (1z)A(z)=a0+n=1(anan1)zn
数列的部分和 A ( z ) 1 − z = ∑ n = 0 ∞ ( ∑ k = 0 n a k ) z n \frac{A(z)}{1 - z} = \sum\limits_{n=0}\limits^{\infty}(\sum\limits_{k=0}\limits^{n}a_{k})z^{n} 1zA(z)=n=0(k=0nak)zn
数列的右移(OGF乘自变量) z A ( z ) = ∑ n = 1 ∞ a n − 1 z n zA(z) = \sum\limits_{n=1}\limits^{\infty}a_{n-1}z^{n} zA(z)=n=1an1zn
数列的左移(OGF除自变量) A ( z ) − a 0 z = ∑ n = 0 ∞ a n + 1 z n \frac{A(z)-a_{0}}{z} = \sum\limits_{n=0}\limits^{\infty}a_{n+1}z^{n} zA(z)a0=n=0an+1zn
OGF的导数(数列乘下标) A ′ ( z ) = ∑ n = 0 ∞ ( n + 1 ) a n + 1 z n A'(z) = \sum\limits_{n=0}\limits^{\infty}(n+1)a_{n+1}z^{n} A(z)=n=0(n+1)an+1zn
OGF的积分(数列除下标) ∫ 0 z A ( t ) d t = ∑ n = 1 ∞ a n − 1 n − 1 z n \int_{0}^{z}A(t)\mathrm{d}t = \sum\limits_{n=1}\limits^{\infty}\frac{a_{n-1}}{n-1}z^{n} 0zA(t)dt=n=1n1an1zn
OGF自变量的比例因子 A ( λ z ) = ∑ n = 0 ∞ λ n a n z n A(\lambda z) = \sum\limits_{n=0}\limits^{\infty}\lambda^{n}a_{n}z^{n} A(λz)=n=0λnanzn
OGF的复合 A ( B ( z ) ) = ∑ n = 0 ∞ a n ( B ( z ) ) n A(B(z)) = \sum\limits_{n=0}\limits^{\infty}a_{n}(B(z))^{n} A(B(z))=n=0an(B(z))n,要求 b 0 = 0 b_{0} = 0 b0=0

常见数列的 OGF

数列 a n a_{n} anOGF A ( z ) A(z) A(z)
a n = 1 a_{n} = 1 an=1 A ( z ) = 1 1 − z A(z) = \frac{1}{1-z} A(z)=1z1
a n = n a_{n} = n an=n A ( z ) = z ( 1 − z ) 2 A(z) = \frac{z}{(1-z)^{2}} A(z)=(1z)2z
a n = ( n 2 ) a_{n} = \binom{n}{2} an=(2n) A ( z ) = z 2 ( 1 − z ) 3 A(z) = \frac{z^{2}}{(1-z)^{3}} A(z)=(1z)3z2
a n = ( n m ) a_{n} = \binom{n}{m} an=(mn) A ( z ) = z m ( 1 − z ) m + 1 A(z) = \frac{z^{m}}{(1-z)^{m+1}} A(z)=(1z)m+1zm
a n = ( m n ) a_{n} = \binom{m}{n} an=(nm) A ( z ) = ( 1 + z ) m A(z) = (1+z)^{m} A(z)=(1+z)m
a 2 k = 1 , a 2 k + 1 = 0 a_{2k}=1, a_{2k+1}=0 a2k=1,a2k+1=0 A ( z ) = 1 1 − z 2 A(z) = \frac{1}{1-z^{2}} A(z)=1z21
a n = c n a_{n} = c^{n} an=cn A ( z ) = 1 1 − c z A(z) = \frac{1}{1-cz} A(z)=1cz1
a n = 1 n ! a_{n} = \frac{1}{n!} an=n!1 A ( z ) = e z A(z) = e^{z} A(z)=ez
a n = 1 n a_{n} = \frac{1}{n} an=n1 A ( z ) = − ln ⁡ ( 1 − z ) A(z) = -\ln(1-z) A(z)=ln(1z)
a n = H n a_{n} = H_{n} an=Hn A ( z ) = 1 1 − z ln ⁡ 1 1 − z A(z) = \frac{1}{1-z}\ln\frac{1}{1-z} A(z)=1z1ln1z1
a n = n ( H n − 1 ) a_{n} = n(H_{n} - 1) an=n(Hn1) A ( z ) = z ( 1 − z ) 2 ln ⁡ 1 1 − z A(z) = \frac{z}{(1-z)^{2}}\ln\frac{1}{1-z} A(z)=(1z)2zln1z1

指数生成函数 (EGF)

指数型生成函数常用于有标记的组合结构的计数问题。

A ( z ) = ∑ n = 0 ∞ a n z n n ! A(z) = \sum\limits_{n=0}\limits^{\infty}a_{n}\frac{z^{n}}{n!} A(z)=n=0ann!zn B ( z ) = ∑ n = 0 ∞ b n z n n ! B(z) = \sum\limits_{n=0}\limits^{\infty}b_{n}\frac{z^{n}}{n!} B(z)=n=0bnn!zn

EGF 的性质

性质公式
数列的相加 A ( z ) + B ( z ) = ∑ n = 0 ∞ ( a n + b n ) z n n ! A(z) + B(z) = \sum\limits_{n=0}\limits^{\infty}(a_{n} + b_{n})\frac{z^{n}}{n!} A(z)+B(z)=n=0(an+bn)n!zn
数列的数乘 α A ( z ) = ∑ n = 0 ∞ α a n z n n ! \alpha A(z) = \sum\limits_{n=0}\limits^{\infty}\alpha a_{n}\frac{z^{n}}{n!} αA(z)=n=0αann!zn
数列的二项卷积(EGF的相乘) A ( z ) B ( z ) = ∑ n = 0 ∞ ( ∑ k = 0 n ( n k ) a k b n − k ) z n n ! A(z)B(z) = \sum\limits_{n=0}\limits^{\infty}(\sum\limits_{k=0}\limits^{n}\binom{n}{k}a_{k}b_{n-k})\frac{z^{n}}{n!} A(z)B(z)=n=0(k=0n(kn)akbnk)n!zn
数列的差分 A ′ ( z ) − A ( z ) = ∑ n = 0 ∞ ( a n + 1 − a n ) z n n ! A'(z) - A(z) = \sum\limits_{n=0}\limits^{\infty}(a_{n+1} - a_{n})\frac{z^{n}}{n!} A(z)A(z)=n=0(an+1an)n!zn
数列的二项部分和 e z A ( z ) = ∑ n = 0 ∞ ( ∑ k = 0 n ( n k ) a k ) z n n ! e^{z}A(z) = \sum\limits_{n=0}\limits^{\infty}(\sum\limits_{k=0}\limits^{n}\binom{n}{k}a_{k})\frac{z^{n}}{n!} ezA(z)=n=0(k=0n(kn)ak)n!zn
数列的右移(EGF的积分) ∫ 0 z A ( t ) d t = ∑ n = 1 ∞ a n − 1 z n n ! \int_{0}^{z}A(t)\mathrm{d}t = \sum\limits_{n=1}\limits^{\infty}a_{n-1}\frac{z^{n}}{n!} 0zA(t)dt=n=1an1n!zn
数列的左移(EGF的导数) A ′ ( z ) = ∑ n = 0 ∞ a n + 1 z n n ! A'(z) = \sum\limits_{n=0}\limits^{\infty}a_{n+1}\frac{z^{n}}{n!} A(z)=n=0an+1n!zn
EGF乘自变量(数列乘下标) z A ( z ) = ∑ n = 0 ∞ n a n − 1 z n n ! zA(z) = \sum\limits_{n=0}\limits^{\infty}na_{n-1}\frac{z^{n}}{n!} zA(z)=n=0nan1n!zn
EGF除自变量(数列除下标) A ( z ) − A ( 0 ) z = ∑ n = 1 ∞ a n + 1 n + 1 z n n ! \frac{A(z)-A(0)}{z} = \sum\limits_{n=1}\limits^{\infty}\frac{a_{n+1}}{n+1}\frac{z^{n}}{n!} zA(z)A(0)=n=1n+1an+1n!zn

常见数列的 EGF

数列 a n a_{n} anEGF A ( z ) A(z) A(z)
a n = 1 a_{n} = 1 an=1 A ( z ) = e z A(z) = e^{z} A(z)=ez
a n = n a_{n} = n an=n A ( z ) = z e z A(z) = ze^{z} A(z)=zez
a n = ( n 2 ) a_{n} = \binom{n}{2} an=(2n) A ( z ) = 1 2 z 2 e z A(z) = \frac{1}{2}z^{2}e^{z} A(z)=21z2ez
a n = ( n m ) a_{n} = \binom{n}{m} an=(mn) A ( z ) = 1 m ! z m e z A(z) = \frac{1}{m!}z^{m}e^{z} A(z)=m!1zmez
a 2 k = 1 , a 2 k + 1 = 0 a_{2k}=1, a_{2k+1}=0 a2k=1,a2k+1=0 A ( z ) = 1 2 ( e z + e − z ) A(z) = \frac{1}{2}(e^{z} + e^{-z}) A(z)=21(ez+ez)
a n = c n a_{n} = c^{n} an=cn A ( z ) = e c z A(z) = e^{cz} A(z)=ecz
a n = 1 n a_{n} = \frac{1}{n} an=n1 A ( z ) = e z − 1 z A(z) = \frac{e^{z}-1}{z} A(z)=zez1
a n = n ! a_{n} = n! an=n! A ( z ) = 1 1 − z A(z) = \frac{1}{1-z} A(z)=1z1

这篇关于生成函数性质速查表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/689648

相关文章

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MySQL中REPLACE函数与语句举例详解

《MySQL中REPLACE函数与语句举例详解》在MySQL中REPLACE函数是一个用于处理字符串的强大工具,它的主要功能是替换字符串中的某些子字符串,:本文主要介绍MySQL中REPLACE函... 目录一、REPLACE()函数语法:参数说明:功能说明:示例:二、REPLACE INTO语句语法:参数

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

Python使用python-pptx自动化操作和生成PPT

《Python使用python-pptx自动化操作和生成PPT》这篇文章主要为大家详细介绍了如何使用python-pptx库实现PPT自动化,并提供实用的代码示例和应用场景,感兴趣的小伙伴可以跟随小编... 目录使用python-pptx操作PPT文档安装python-pptx基础概念创建新的PPT文档查看

python中update()函数的用法和一些例子

《python中update()函数的用法和一些例子》update()方法是字典对象的方法,用于将一个字典中的键值对更新到另一个字典中,:本文主要介绍python中update()函数的用法和一些... 目录前言用法注意事项示例示例 1: 使用另一个字典来更新示例 2: 使用可迭代对象来更新示例 3: 使用