ACK One Argo工作流:实现动态 Fan-out/Fan-in 任务编排

2024-02-07 21:04

本文主要是介绍ACK One Argo工作流:实现动态 Fan-out/Fan-in 任务编排,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:庄宇

什么是 Fan-out Fan-in

在工作流编排过程中,为了加快大任务处理的效率,可以使用 Fan-out Fan-in 任务编排,将大任务分解成小任务,然后并行运行小任务,最后聚合结果。

图片

由上图,可以使用 DAG(有向无环图)编排 Fan-out Fan-in 任务,子任务的拆分方式分为静态和动态,分别对应静态 DAG 和动态 DAG。动态 DAG Fan-out Fan-in 也可以理解为 MapReduce。每个子任务为 Map,最后聚合结果为 Reduce。

静态 DAG: 拆分的子任务分类是固定的,例如:在数据收集场景中,同时收集数据库 1 和数据库 2 中的数据,最后聚合结果。

动态 DAG: 拆分的子任务分类是动态的,取决于前一个任务的输出结果,例如:在数据处理场景中,任务 A 可以扫描待处理的数据集,为每个子数据集(例如:一个子目录)启动子任务 Bn 处理,当所有子任务 Bn 运行结束后,在子任务 C 中聚合结果,具体启动多少个子任务 B 取决由任务 A 的输出结果。根据实际的业务场景,可以在任务 A 中自定义子任务的拆分规则。

ACK One 分布式工作流 Argo 集群

在实际的业务场景中,为了加快大任务的执行,提升效率,往往需要将一个大任务分解成数千个子任务,为了保证数千个子任务的同时运行,需要调度数万核的 CPU 资源,叠加多任务需要竞争资源,一般 IDC 的离线任务集群难以满足需求。例如:自动驾驶仿真任务,修改算法后的回归测试,需要对所有驾驶场景仿真,每个小驾驶场景的仿真可以由一个子任务运行,开发团队为加快迭代速度,要求所有子场景测试并行执行。

如果您在数据处理,仿真计算和科学计算等场景中,需要使用动态 DAG 的方式编排任务,或者同时需要调度数万核的 CPU 资源加快任务运行,您可以使用阿里云 ACK One 分布式工作流 Argo 集群 [ 1]

ACK One 分布式工作流 Argo 集群,产品化托管 Argo Workflow [ 2] ,提供售后支持,支持动态 DAG Fan-out Fan-in 任务编排,支持按需调度云上算力,利用云上弹性,调度数万核 CPU 资源并行运行大规模子任务,减少运行时间,运行完成后及时回收资源节省成本。支持数据处理,机器学习,仿真计算,科学计算,CICD 等业务场景。

Argo Workflow 是开源 CNCF 毕业项目,聚焦云原生领域下的工作流编排,使用 Kubernetes CRD 编排离线任务和 DAG 工作流,并使用 Kubernetes Pod 在集群中调度运行。

本文介绍使用 Argo Workflow 编排动态 DAG Fan-out Fan-in 任务。

Argo Workflow 编排 Fan-out Fan-in 任务

我们将构建一个动态 DAG Fan-out Fan-in 工作流,读取阿里云 OSS 对象存储中的一个大日志文件,并将其拆分为多个小文件(split),启动多个子任务分别计算每个小文件中的关键词数量(count),最后聚合结果(merge)。

  1. 创建分布式工作流 Argo 集群 [ 3]

  2. 挂载阿里云 OSS 存储卷,工作流可以像操作本地文件一样,操作阿里云 OSS 上的文件。参考:工作流使用存储卷 [ 4]

  3. 使用以下工作流 YAML 创建一个工作流,参考:创建工作流 [ 5] 。具体说明参见注释。

apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:generateName: dynamic-dag-map-reduce-
spec:entrypoint: main# claim a OSS PVC, workflow can read/write file in OSS through PVC. volumes:- name: workdirpersistentVolumeClaim:claimName: pvc-oss# how many tasks to split, default is 5.arguments:parameters:- name: numPartsvalue: "5"templates:- name: main# DAG definition.dag:tasks:# split log files to several small files, based on numParts.- name: splittemplate: splitarguments:parameters:- name: numPartsvalue: "{{workflow.parameters.numParts}}"# multiple map task to count words in each small file.- name: maptemplate: maparguments:parameters:- name: partIdvalue: '{{item}}'depends: "split"# run as a loop, partId from split task json outputs.withParam: '{{tasks.split.outputs.result}}'- name: reducetemplate: reducearguments:parameters:- name: numPartsvalue: "{{workflow.parameters.numParts}}"depends: "map"# The `split` task split the big log file to several small files. Each file has a unique ID (partId).# Finally, it dumps a list of partId to stdout as output parameters- name: splitinputs:parameters:- name: numPartscontainer:image: acr-multiple-clusters-registry.cn-hangzhou.cr.aliyuncs.com/ack-multiple-clusters/python-log-countcommand: [python]args: ["split.py"]env:- name: NUM_PARTSvalue: "{{inputs.parameters.numParts}}"volumeMounts:- name: workdirmountPath: /mnt/vol# One `map` per partID is started. Finds its own "part file" and processes it.- name: mapinputs:parameters:- name: partIdcontainer:image: acr-multiple-clusters-registry.cn-hangzhou.cr.aliyuncs.com/ack-multiple-clusters/python-log-countcommand: [python]args: ["count.py"]env:- name: PART_IDvalue: "{{inputs.parameters.partId}}"volumeMounts:- name: workdirmountPath: /mnt/vol# The `reduce` task takes the "results directory" and returns a single result.- name: reduceinputs:parameters:- name: numPartscontainer:image: acr-multiple-clusters-registry.cn-hangzhou.cr.aliyuncs.com/ack-multiple-clusters/python-log-countcommand: [python]args: ["merge.py"]env:- name: NUM_PARTSvalue: "{{inputs.parameters.numParts}}"volumeMounts:- name: workdirmountPath: /mnt/voloutputs:artifacts:- name: resultpath: /mnt/vol/result.json
  1. 动态 DAG 实现

1)split 任务在拆分大文件后,会在标准输出中输出一个 json 字符串,包含:子任务要处理的 partId,例如:

["0", "1", "2", "3", "4"]

2)map 任务使用 withParam 引用 split 任务的输出,并解析 json 字符串获得所有 {{item}},并使用每个 {{item}} 作为输入参数启动多个 map 任务。

          - name: maptemplate: maparguments:parameters:- name: partIdvalue: '{{item}}'depends: "split"withParam: '{{tasks.split.outputs.result}}'

更多定义方式,请参考开源 Argo Workflow 文档 [ 6]

  1. 工作流运行后,通过分布式工作流 Argo 集群控制台 [ 7] 查看任务 DAG 流程与运行结果。

图片

  1. 阿里云 OSS 文件列表,log-count-data.txt 为输入日志文件,split-output,cout-output 中间结果目录,result.json 为最终结果文件。

图片

  1. 示例中的源代码可以参考:AliyunContainerService GitHub argo-workflow-examples [ 8]

总结

Argo Workflow 是开源 CNCF 毕业项目,聚焦云原生领域下的工作流编排,使用 Kubernetes CRD 编排离线任务和 DAG 工作流,并使用 Kubernetes Pod 在集群中调度运行。

阿里云 ACK One 分布式工作流 Argo 集群,产品化托管 Argo Workflow,提供售后支持,加固控制面实现数万子任务(Pod)稳定高效调度运行,数据面支持无服务器方式调度云上大规模算力,无需运维集群或者节点,支持按需调度云上算力,利用云上弹性,调度数万核 CPU 资源并行运行大规模子任务,减少运行时间,支持数据处理,机器学习,仿真计算,科学计算,CICD 等业务场景。

欢迎加入 ACK One 客户交流钉钉群与我们进行交流。(钉钉群号:35688562

相关链接:

[1] 阿里云 ACK One 分布式工作流 Argo 集群

https://help.aliyun.com/zh/ack/overview-12

[2] Argo Workflow

https://argo-workflows.readthedocs.io/en/latest/

[3] 创建分布式工作流 Argo 集群

https://help.aliyun.com/zh/ack/create-a-workflow-cluster

[4] 工作流使用存储卷

https://help.aliyun.com/zh/ack/use-volumes

[5] 创建工作流

https://help.aliyun.com/zh/ack/create-a-workflow

[6] 开源 Argo Workflow 文档

https://argo-workflows.readthedocs.io/en/latest/walk-through/loops/

[7] 分布式工作流 Argo 集群控制台

https://account.aliyun.com/login/login.htm?oauth_callback=https%3A%2F%2Fcs.console.aliyun.com%2Fone%3Fspm%3Da2c4g.11186623.0.0.7e2f1428OwzMip#/argowf/cluster/detail

[8] AliyunContainerService GitHub argo-workflow-examples

https://github.com/AliyunContainerService/argo-workflow-examples/tree/main/log-count

这篇关于ACK One Argo工作流:实现动态 Fan-out/Fan-in 任务编排的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/688930

相关文章

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert