ACK One Argo工作流:实现动态 Fan-out/Fan-in 任务编排

2024-02-07 21:04

本文主要是介绍ACK One Argo工作流:实现动态 Fan-out/Fan-in 任务编排,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:庄宇

什么是 Fan-out Fan-in

在工作流编排过程中,为了加快大任务处理的效率,可以使用 Fan-out Fan-in 任务编排,将大任务分解成小任务,然后并行运行小任务,最后聚合结果。

图片

由上图,可以使用 DAG(有向无环图)编排 Fan-out Fan-in 任务,子任务的拆分方式分为静态和动态,分别对应静态 DAG 和动态 DAG。动态 DAG Fan-out Fan-in 也可以理解为 MapReduce。每个子任务为 Map,最后聚合结果为 Reduce。

静态 DAG: 拆分的子任务分类是固定的,例如:在数据收集场景中,同时收集数据库 1 和数据库 2 中的数据,最后聚合结果。

动态 DAG: 拆分的子任务分类是动态的,取决于前一个任务的输出结果,例如:在数据处理场景中,任务 A 可以扫描待处理的数据集,为每个子数据集(例如:一个子目录)启动子任务 Bn 处理,当所有子任务 Bn 运行结束后,在子任务 C 中聚合结果,具体启动多少个子任务 B 取决由任务 A 的输出结果。根据实际的业务场景,可以在任务 A 中自定义子任务的拆分规则。

ACK One 分布式工作流 Argo 集群

在实际的业务场景中,为了加快大任务的执行,提升效率,往往需要将一个大任务分解成数千个子任务,为了保证数千个子任务的同时运行,需要调度数万核的 CPU 资源,叠加多任务需要竞争资源,一般 IDC 的离线任务集群难以满足需求。例如:自动驾驶仿真任务,修改算法后的回归测试,需要对所有驾驶场景仿真,每个小驾驶场景的仿真可以由一个子任务运行,开发团队为加快迭代速度,要求所有子场景测试并行执行。

如果您在数据处理,仿真计算和科学计算等场景中,需要使用动态 DAG 的方式编排任务,或者同时需要调度数万核的 CPU 资源加快任务运行,您可以使用阿里云 ACK One 分布式工作流 Argo 集群 [ 1]

ACK One 分布式工作流 Argo 集群,产品化托管 Argo Workflow [ 2] ,提供售后支持,支持动态 DAG Fan-out Fan-in 任务编排,支持按需调度云上算力,利用云上弹性,调度数万核 CPU 资源并行运行大规模子任务,减少运行时间,运行完成后及时回收资源节省成本。支持数据处理,机器学习,仿真计算,科学计算,CICD 等业务场景。

Argo Workflow 是开源 CNCF 毕业项目,聚焦云原生领域下的工作流编排,使用 Kubernetes CRD 编排离线任务和 DAG 工作流,并使用 Kubernetes Pod 在集群中调度运行。

本文介绍使用 Argo Workflow 编排动态 DAG Fan-out Fan-in 任务。

Argo Workflow 编排 Fan-out Fan-in 任务

我们将构建一个动态 DAG Fan-out Fan-in 工作流,读取阿里云 OSS 对象存储中的一个大日志文件,并将其拆分为多个小文件(split),启动多个子任务分别计算每个小文件中的关键词数量(count),最后聚合结果(merge)。

  1. 创建分布式工作流 Argo 集群 [ 3]

  2. 挂载阿里云 OSS 存储卷,工作流可以像操作本地文件一样,操作阿里云 OSS 上的文件。参考:工作流使用存储卷 [ 4]

  3. 使用以下工作流 YAML 创建一个工作流,参考:创建工作流 [ 5] 。具体说明参见注释。

apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:generateName: dynamic-dag-map-reduce-
spec:entrypoint: main# claim a OSS PVC, workflow can read/write file in OSS through PVC. volumes:- name: workdirpersistentVolumeClaim:claimName: pvc-oss# how many tasks to split, default is 5.arguments:parameters:- name: numPartsvalue: "5"templates:- name: main# DAG definition.dag:tasks:# split log files to several small files, based on numParts.- name: splittemplate: splitarguments:parameters:- name: numPartsvalue: "{{workflow.parameters.numParts}}"# multiple map task to count words in each small file.- name: maptemplate: maparguments:parameters:- name: partIdvalue: '{{item}}'depends: "split"# run as a loop, partId from split task json outputs.withParam: '{{tasks.split.outputs.result}}'- name: reducetemplate: reducearguments:parameters:- name: numPartsvalue: "{{workflow.parameters.numParts}}"depends: "map"# The `split` task split the big log file to several small files. Each file has a unique ID (partId).# Finally, it dumps a list of partId to stdout as output parameters- name: splitinputs:parameters:- name: numPartscontainer:image: acr-multiple-clusters-registry.cn-hangzhou.cr.aliyuncs.com/ack-multiple-clusters/python-log-countcommand: [python]args: ["split.py"]env:- name: NUM_PARTSvalue: "{{inputs.parameters.numParts}}"volumeMounts:- name: workdirmountPath: /mnt/vol# One `map` per partID is started. Finds its own "part file" and processes it.- name: mapinputs:parameters:- name: partIdcontainer:image: acr-multiple-clusters-registry.cn-hangzhou.cr.aliyuncs.com/ack-multiple-clusters/python-log-countcommand: [python]args: ["count.py"]env:- name: PART_IDvalue: "{{inputs.parameters.partId}}"volumeMounts:- name: workdirmountPath: /mnt/vol# The `reduce` task takes the "results directory" and returns a single result.- name: reduceinputs:parameters:- name: numPartscontainer:image: acr-multiple-clusters-registry.cn-hangzhou.cr.aliyuncs.com/ack-multiple-clusters/python-log-countcommand: [python]args: ["merge.py"]env:- name: NUM_PARTSvalue: "{{inputs.parameters.numParts}}"volumeMounts:- name: workdirmountPath: /mnt/voloutputs:artifacts:- name: resultpath: /mnt/vol/result.json
  1. 动态 DAG 实现

1)split 任务在拆分大文件后,会在标准输出中输出一个 json 字符串,包含:子任务要处理的 partId,例如:

["0", "1", "2", "3", "4"]

2)map 任务使用 withParam 引用 split 任务的输出,并解析 json 字符串获得所有 {{item}},并使用每个 {{item}} 作为输入参数启动多个 map 任务。

          - name: maptemplate: maparguments:parameters:- name: partIdvalue: '{{item}}'depends: "split"withParam: '{{tasks.split.outputs.result}}'

更多定义方式,请参考开源 Argo Workflow 文档 [ 6]

  1. 工作流运行后,通过分布式工作流 Argo 集群控制台 [ 7] 查看任务 DAG 流程与运行结果。

图片

  1. 阿里云 OSS 文件列表,log-count-data.txt 为输入日志文件,split-output,cout-output 中间结果目录,result.json 为最终结果文件。

图片

  1. 示例中的源代码可以参考:AliyunContainerService GitHub argo-workflow-examples [ 8]

总结

Argo Workflow 是开源 CNCF 毕业项目,聚焦云原生领域下的工作流编排,使用 Kubernetes CRD 编排离线任务和 DAG 工作流,并使用 Kubernetes Pod 在集群中调度运行。

阿里云 ACK One 分布式工作流 Argo 集群,产品化托管 Argo Workflow,提供售后支持,加固控制面实现数万子任务(Pod)稳定高效调度运行,数据面支持无服务器方式调度云上大规模算力,无需运维集群或者节点,支持按需调度云上算力,利用云上弹性,调度数万核 CPU 资源并行运行大规模子任务,减少运行时间,支持数据处理,机器学习,仿真计算,科学计算,CICD 等业务场景。

欢迎加入 ACK One 客户交流钉钉群与我们进行交流。(钉钉群号:35688562

相关链接:

[1] 阿里云 ACK One 分布式工作流 Argo 集群

https://help.aliyun.com/zh/ack/overview-12

[2] Argo Workflow

https://argo-workflows.readthedocs.io/en/latest/

[3] 创建分布式工作流 Argo 集群

https://help.aliyun.com/zh/ack/create-a-workflow-cluster

[4] 工作流使用存储卷

https://help.aliyun.com/zh/ack/use-volumes

[5] 创建工作流

https://help.aliyun.com/zh/ack/create-a-workflow

[6] 开源 Argo Workflow 文档

https://argo-workflows.readthedocs.io/en/latest/walk-through/loops/

[7] 分布式工作流 Argo 集群控制台

https://account.aliyun.com/login/login.htm?oauth_callback=https%3A%2F%2Fcs.console.aliyun.com%2Fone%3Fspm%3Da2c4g.11186623.0.0.7e2f1428OwzMip#/argowf/cluster/detail

[8] AliyunContainerService GitHub argo-workflow-examples

https://github.com/AliyunContainerService/argo-workflow-examples/tree/main/log-count

这篇关于ACK One Argo工作流:实现动态 Fan-out/Fan-in 任务编排的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/688930

相关文章

Nginx更新SSL证书的实现步骤

《Nginx更新SSL证书的实现步骤》本文主要介绍了Nginx更新SSL证书的实现步骤,包括下载新证书、备份旧证书、配置新证书、验证配置及遇到问题时的解决方法,感兴趣的了解一下... 目录1 下载最新的SSL证书文件2 备份旧的SSL证书文件3 配置新证书4 验证配置5 遇到的http://www.cppc

Nginx之https证书配置实现

《Nginx之https证书配置实现》本文主要介绍了Nginx之https证书配置的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起... 目录背景介绍为什么不能部署在 IIS 或 NAT 设备上?具体实现证书获取nginx配置扩展结果验证

SpringBoot整合 Quartz实现定时推送实战指南

《SpringBoot整合Quartz实现定时推送实战指南》文章介绍了SpringBoot中使用Quartz动态定时任务和任务持久化实现多条不确定结束时间并提前N分钟推送的方案,本文结合实例代码给大... 目录前言一、Quartz 是什么?1、核心定位:解决什么问题?2、Quartz 核心组件二、使用步骤1

使用Redis实现会话管理的示例代码

《使用Redis实现会话管理的示例代码》文章介绍了如何使用Redis实现会话管理,包括会话的创建、读取、更新和删除操作,通过设置会话超时时间并重置,可以确保会话在用户持续活动期间不会过期,此外,展示了... 目录1. 会话管理的基本概念2. 使用Redis实现会话管理2.1 引入依赖2.2 会话管理基本操作

mybatis-plus分表实现案例(附示例代码)

《mybatis-plus分表实现案例(附示例代码)》MyBatis-Plus是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,为简化开发、提高效率而生,:本文主要介绍my... 目录文档说明数据库水平分表思路1. 为什么要水平分表2. 核心设计要点3.基于数据库水平分表注意事项示例

C#高效实现在Word文档中自动化创建图表的可视化方案

《C#高效实现在Word文档中自动化创建图表的可视化方案》本文将深入探讨如何利用C#,结合一款功能强大的第三方库,实现在Word文档中自动化创建图表,为你的数据呈现和报告生成提供一套实用且高效的解决方... 目录Word文档图表自动化:为什么选择C#?从零开始:C#实现Word文档图表的基本步骤深度优化:C

nginx跨域访问配置的几种方法实现

《nginx跨域访问配置的几种方法实现》本文详细介绍了Nginx跨域配置方法,包括基本配置、只允许指定域名、携带Cookie的跨域、动态设置允许的Origin、支持不同路径的跨域控制、静态资源跨域以及... 目录一、基本跨域配置二、只允许指定域名跨域三、完整示例四、配置后重载 nginx五、注意事项六、支持

Qt实现对Word网页的读取功能

《Qt实现对Word网页的读取功能》文章介绍了几种在Qt中实现Word文档(.docx/.doc)读写功能的方法,包括基于QAxObject的COM接口调用、DOCX模板替换及跨平台解决方案,重点讨论... 目录1. 核心实现方式2. 基于QAxObject的COM接口调用(Windows专用)2.1 环境

MySQL查看表的历史SQL的几种实现方法

《MySQL查看表的历史SQL的几种实现方法》:本文主要介绍多种查看MySQL表历史SQL的方法,包括通用查询日志、慢查询日志、performance_schema、binlog、第三方工具等,并... 目录mysql 查看某张表的历史SQL1.查看MySQL通用查询日志(需提前开启)2.查看慢查询日志3.

Java实现字符串大小写转换的常用方法

《Java实现字符串大小写转换的常用方法》在Java中,字符串大小写转换是文本处理的核心操作之一,Java提供了多种灵活的方式来实现大小写转换,适用于不同场景和需求,本文将全面解析大小写转换的各种方法... 目录前言核心转换方法1.String类的基础方法2. 考虑区域设置的转换3. 字符级别的转换高级转换