对 BatchNormalization 中 Internal Convariate Shift 的理解

2024-02-07 14:38

本文主要是介绍对 BatchNormalization 中 Internal Convariate Shift 的理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:写的不好,主要解释了对内部协变量漂移(Internal Convariate Shift)的理解。


之前对BatchNormalization的理解不是很透彻,在搭建神经网络的时候也没有很注意去使用,今天集中搜索整理了下Batch Normalization的相关资料,才知道BatchNormalization的重要性,并不是用了Relu激活函数,BatchNormalization就没有用了。

为什么要使用Batch Normalization?

1. 降低内部协变量漂移(Internal Convariate Shift)

神经网络的最终目的:说到底,就是学习训练样本的流形分布。

每一层神经网络的目的:学习当前层神经网络的输入或上一层神经网络的输出的分布。

机器学习(包含深度学习)的使用的基本假设:IID 独立同分布假设,就是训练数据集与测试数据集服从相同的分布。这是通过训练数据训练得到的模型能在测试数据上工作的一个基本保障。

深度学习中的IID 独立同分布假设:1)神经网络的训练集与测试集服从相同的分布。

                                                        2)神经网络每一次输入的mini-batch的样本都服从同一个分布。

每层神经网络的IID 独立同分布假设:鉴于每层神经网络的目的,我们希望每一层神经网络在每一次迭代时的输入都服从同一个分布,只有这样,这层神经网络才能有效学习这个分布。否则,如果一个神经网络每一次输入的都是服从不同分布的样本,那么,最后神经网络也不知道该学习哪个分布了,从而导致学习效果变差。

协变量漂移/偏移(Convariate Shift):一般是指训练集与测试集的分布不同,或每次迭代时输入层输入的样本服从的分布不同。

内部协变量漂移(Internal Convariate Shift):Internal 指的是深层网络的隐藏层。内部协变量漂移是指,针对深层神经网络的内部的某个隐藏层,它的输入数据是上一层神经网络的输出。而随着神经网络的训练,每一层神经网络的参数(包含上一层)是不断变化的,因此,即使上一层网络的输入服从相同的分布,经过网络参数的变化,上一层网络的输出数据与上一次迭代时的输出数据不再服从同一个分布。从而导致,当前层神经网络的当前次的输入数据与上一次迭代时的输入数据服从不同的分布。我们把这种现象叫做内部协变量漂移。最后用一句话描述就是:由于神经网络参数的不断变化,每一层隐藏层神经网络在每一次迭代时的输入数据都服从不同的分布,这种现象叫内部协变量漂移。(我这里倾向于把shift翻译为“漂移”而不是“偏移”,因为每次迭代时内部输入数据都服从不同的分布,所以“漂移”更形象)

(附)如何判断是否已经出现协变量漂移:MCC(Matthews correlation coefficient),这个指标本质上是用一个训练集数据和预测集数据之间的相关系数,取值在[-1,1]之间,如果是1就是强烈的正相关,0就是没有相关性,-1就是强烈的负相关。

2.梯度消失

批标准化可以使数据远离激活函数的极限饱和区。relu激活函数虽然不存在梯度消失的问题,但是把小于0的数值激活为0。批标准化可以减少被置零的数值的数目。

 

Batch Normalization的执行时机

在激活函数之前

Batch Normalization解决的问题

1. 内部协变量漂移

2. 梯度消失

3. 加快收敛速度,提升训练速度。

Relu 激活函数下仍有使用Batch Normalization的必要

 

 

 

参考:【深度学习】深入理解Batch Normalization批标准化

TensorFlow 中 Batch Normalization API 的一些坑

批标准化详解(Batch Normalization for Reducing Internal Covariate Shift)

深度模型中relu激活函数的不足,batch normalization怎么解决梯度消失爆炸的数值问题

标准化(BN)与激活函数

这篇关于对 BatchNormalization 中 Internal Convariate Shift 的理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/688039

相关文章

深入理解Apache Airflow 调度器(最新推荐)

《深入理解ApacheAirflow调度器(最新推荐)》ApacheAirflow调度器是数据管道管理系统的关键组件,负责编排dag中任务的执行,通过理解调度器的角色和工作方式,正确配置调度器,并... 目录什么是Airflow 调度器?Airflow 调度器工作机制配置Airflow调度器调优及优化建议最

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

深入理解Redis大key的危害及解决方案

《深入理解Redis大key的危害及解决方案》本文主要介绍了深入理解Redis大key的危害及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、背景二、什么是大key三、大key评价标准四、大key 产生的原因与场景五、大key影响与危

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

深入理解RxJava:响应式编程的现代方式

在当今的软件开发世界中,异步编程和事件驱动的架构变得越来越重要。RxJava,作为响应式编程(Reactive Programming)的一个流行库,为Java和Android开发者提供了一种强大的方式来处理异步任务和事件流。本文将深入探讨RxJava的核心概念、优势以及如何在实际项目中应用它。 文章目录 💯 什么是RxJava?💯 响应式编程的优势💯 RxJava的核心概念

如何通俗理解注意力机制?

1、注意力机制(Attention Mechanism)是机器学习和深度学习中一种模拟人类注意力的方法,用于提高模型在处理大量信息时的效率和效果。通俗地理解,它就像是在一堆信息中找到最重要的部分,把注意力集中在这些关键点上,从而更好地完成任务。以下是几个简单的比喻来帮助理解注意力机制: 2、寻找重点:想象一下,你在阅读一篇文章的时候,有些段落特别重要,你会特别注意这些段落,反复阅读,而对其他部分