gem5学习(17):ARM功耗建模——ARM Power Modelling

2024-02-07 02:36

本文主要是介绍gem5学习(17):ARM功耗建模——ARM Power Modelling,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、Dynamic Power States

二、Power Usage Types

三、MathExprPowerModels

四、Extending an existing simulation

五、Stat dump frequency

六、Common Problems


官网教程:gem5: ARM Power Modelling

通过使用gem5中已记录的各种统计数据,可以在gem5模拟中对能量和功率使用(energy and power usage)进行建模和监控。这是通过使用MathExprPowerModel实现的,它是一种通过数学方程来建模功率使用的方法。本教程详细介绍了功耗建模所需的各个组件,并解释了如何将它们添加到现有的ARM模拟中。

本章借鉴了位于configs/example/arm目录中的fs_power.py配置脚本,并提供了扩展此脚本或其他脚本的说明。

请注意,只有在使用更详细的“timing” CPU时才能应用功耗模型。

关于功耗建模如何集成到gem5中以及它们与模拟器的其他部分如何交互的概述,可以在Sascha Bischoff在2017年ARM Research Summit上的演示中找到。

完整的fs_power.py配置脚本:

import argparse
import osimport m5
from m5.objects import MathExprPowerModel, PowerModelimport fs_bigLITTLE as bLclass CpuPowerOn(MathExprPowerModel):def __init__(self, cpu_path, **kwargs):super(CpuPowerOn, self).__init__(**kwargs)# 2A per IPC, 3pA per cache miss# and then convert to Wattself.dyn = ("voltage * (2 * {}.ipc + 3 * 0.000000001 * ""{}.dcache.overallMisses / simSeconds)".format(cpu_path, cpu_path))self.st = "4 * temp"class CpuPowerOff(MathExprPowerModel):dyn = "0"st = "0"class CpuPowerModel(PowerModel):def __init__(self, cpu_path, **kwargs):super(CpuPowerModel, self).__init__(**kwargs)self.pm = [CpuPowerOn(cpu_path),  # ONCpuPowerOff(),  # CLK_GATEDCpuPowerOff(),  # SRAM_RETENTIONCpuPowerOff(),  # OFF]class L2PowerOn(MathExprPowerModel):def __init__(self, l2_path, **kwargs):super(L2PowerOn, self).__init__(**kwargs)# Example to report l2 Cache overallAccesses# The estimated power is converted to Watt and will vary based# on the size of the cacheself.dyn = f"{l2_path}.overallAccesses * 0.000018000"self.st = "(voltage * 3)/10"class L2PowerOff(MathExprPowerModel):dyn = "0"st = "0"class L2PowerModel(PowerModel):def __init__(self, l2_path, **kwargs):super(L2PowerModel, self).__init__(**kwargs)# Choose a power model for every power stateself.pm = [L2PowerOn(l2_path),  # ONL2PowerOff(),  # CLK_GATEDL2PowerOff(),  # SRAM_RETENTIONL2PowerOff(),  # OFF]def main():parser = argparse.ArgumentParser(description="Generic ARM big.LITTLE configuration with ""example power models")bL.addOptions(parser)options = parser.parse_args()if options.cpu_type != "timing":m5.fatal("The power example script requires 'timing' CPUs.")root = bL.build(options)# Wire up some example power models to the CPUsfor cpu in root.system.descendants():if not isinstance(cpu, m5.objects.BaseCPU):continuecpu.power_state.default_state = "ON"cpu.power_model = CpuPowerModel(cpu.path())# Example power model for the L2 Cache of the bigClusterfor l2 in root.system.bigCluster.l2.descendants():if not isinstance(l2, m5.objects.Cache):continuel2.power_state.default_state = "ON"l2.power_model = L2PowerModel(l2.path())bL.instantiate(options)print("*" * 70)print("WARNING: The power numbers generated by this script are ""examples. They are not representative of any particular ""implementation or process.")print("*" * 70)# Dumping stats periodicallym5.stats.periodicStatDump(m5.ticks.fromSeconds(0.1e-3))bL.run()if __name__ == "__m5_main__":main()
  • 实现了一个使用gem5模拟器的ARM big.LITTLE配置,并使用了示例的功耗模型。它定义了几个功耗模型类,包括CpuPowerOn、CpuPowerOff、CpuPowerModel、L2PowerOn、L2PowerOff和L2PowerModel。这些类通过继承MathExprPowerModel和PowerModel来定义不同的功耗模型。
  • 主函数main()中首先解析命令行参数,并构建gem5模拟器的系统。然后,将示例的功耗模型与CPU和L2 Cache相关联。对于每个CPU,设置默认的功耗状态为“ON”,并将CpuPowerModel功耗模型与其关联。对于bigCluster的L2 Cache,设置默认的功耗状态为“ON”,并将L2PowerModel功耗模型与其关联。

一、Dynamic Power States

功耗模型由两个函数组成,用于描述如何计算不同功耗状态下的功耗消耗。这些功耗状态包括以下几种(来自src/sim/PowerState.py):

  • UNDEFINED:无效状态,没有可用的功耗状态相关信息。这是默认状态。
  • ON:逻辑块正在主动运行,并根据所需的处理量消耗动态能量和漏电能量。
  • CLK_GATED:块内的时钟电路被关闭以节省动态能量,但块的电源仍然打开,并且块正在消耗漏电能量。
  • SRAM_RETENTION:逻辑块内的SRAM被拉入保持状态,进一步减少漏电能量。
  • OFF:逻辑块被断电,不消耗任何能量。

每个状态(除了UNDEFINED)都分配了一个功耗模型,使用PowerModel类的pm字段。它是一个包含4个功耗模型的列表,分别对应以下顺序的状态:

  • ON
  • CLK_GATED
  • SRAM_RETENTION
  • OFF

需要注意的是,虽然有4个不同的条目,但这些条目不一定是不同的功耗模型。提供的fs_power.py文件在ON状态使用一个功耗模型,然后在其余状态使用相同的功耗模型。

二、Power Usage Types

gem5模拟器对功耗使用模拟了两种类型:

  • 静态功耗(static):模拟系统在任何活动情况下使用的功耗。
  • 动态功耗(dynamic):由于各种活动而导致系统使用的功耗。

一个功耗模型必须包含用于模拟这两种功耗的方程(这个方程可以非常简单,比如,如果不需要或者与该功耗模型无关的静态功耗,可以将其设为st = "0")。

三、MathExprPowerModels

在fs_power.py中提供的功耗模型是继承自MathExprPowerModel类的。MathExprPowerModel是指定为包含用于计算系统功耗的数学表达式的字符串。它们通常包含了一些统计数据和自动变量,比如温度,例如:

class CpuPowerOn(MathExprPowerModel):def __init__(self, cpu_path, **kwargs):super(CpuPowerOn, self).__init__(**kwargs)# 2A per IPC, 3pA per cache miss# and then convert to Wattself.dyn = "voltage * (2 * {}.ipc + 3 * 0.000000001 * " \"{}.dcache.overall_misses / sim_seconds)".format(cpu_path,cpu_path)self.st = "4 * temp"

上述的功耗模型来源于提供的fs_power.py文件。

可以看到自动变量(电压和温度【voltage and temp】)不需要路径,而组件特定的统计信息(CPU的每周期指令ipc)需要路径。在文件的主函数中,可以看到CPU对象有一个path()函数,返回组件在系统中的“路径”,例如system.bigCluster.cpus0。path函数由SimObject提供,因此可以被系统中任何扩展了SimObject的对象使用,例如稍后几行中的L2缓存对象也使用了它。

(注意将dcache.overall_misses除以sim_seconds以转换为瓦特。这是一个功耗模型,即能量随时间的变化。在使用这些术语时要小心,因为它们通常可以互换使用,但在功耗和能量模拟/建模方面,它们具有非常具体的含义。)

四、Extending an existing simulation

提供的fs_power.py脚本通过导入现有的fs_bigLITTLE.py脚本并修改其值来进行扩展。作为其中的一部分,使用了几个循环来迭代SimObjects的后代,以应用功耗模型。因此,为了扩展现有的仿真以支持功耗模型,可以定义一个辅助函数来帮助完成这个任务。

def _apply_pm(simobj, power_model, so_class=None):for desc in simobj.descendants():if so_class is not None and not isinstance(desc, so_class):continuedesc.power_state.default_state = "ON"desc.power_model = power_model(desc.path())

上述函数接受一个SimObject、一个Power Model和一个可选的类,SimObject的子孙必须实例化该类才能应用PM。如果没有指定类,则PM将应用于所有子孙。

无论是否决定使用辅助函数,现在需要定义一些Power Models。可以按照fs_power.py文件中的模式进行操作:

  1. 为感兴趣的每个功耗状态定义一个类。这些类应该扩展MathExprPowerModel,并包含dynst字段(分别表示动态和静态功耗)。每个字段应包含一个字符串,描述在该状态下如何计算各自类型的功耗。它们的构造函数应接受一个路径,用于通过格式在描述功耗计算方程的字符串中使用,并接受一些kwargs参数,以传递给超级构造函数。
  2. 定义一个类来保存在上一步中定义的所有Power Models。这个类应该扩展PowerModel,并包含一个名为pm的单一字段,其中包含一个包含4个元素的列表:pm[0]应该是“ON”功耗状态的Power Model的实例;pm[1]应该是“CLK_GATED”功耗状态的Power Model的实例;等等。这个类的构造函数应接受要传递给各个Power Models的路径,以及一些kwargs参数,这些参数将传递给超级构造函数。
  3. 有了辅助函数和上述类的定义,您可以扩展build函数,并在addOptions函数中添加一个命令行标志(如果希望能够切换使用这些模型)。

示例实现:

class CpuPowerOn(MathExprPowerModel):def __init__(self, cpu_path, **kwargs):super(CpuPowerOn, self).__init__(**kwargs)self.dyn = "voltage * 2 * {}.ipc".format(cpu_path)self.st = "4 * temp"class CpuPowerClkGated(MathExprPowerModel):def __init__(self, cpu_path, **kwargs):super(CpuPowerOn, self).__init__(**kwargs)self.dyn = "voltage / sim_seconds"self.st = "4 * temp"class CpuPowerOff(MathExprPowerModel):dyn = "0"st = "0"class CpuPowerModel(PowerModel):def __init__(self, cpu_path, **kwargs):super(CpuPowerModel, self).__init__(**kwargs)self.pm = [CpuPowerOn(cpu_path),       # ONCpuPowerClkGated(cpu_path), # CLK_GATEDCpuPowerOff(),              # SRAM_RETENTIONCpuPowerOff(),              # OFF][...]def addOptions(parser):[...]parser.add_argument("--power-models", action="store_true",help="Add power models to the simulated system. ""Requires using the 'timing' CPU."return parserdef build(options):root = Root(full_system=True)[...]if options.power_models:if options.cpu_type != "timing":m5.fatal("The power models require the 'timing' CPUs.")_apply_pm(root.system.bigCluster.cpus, CpuPowerModelso_class=m5.objects.BaseCpu)_apply_pm(root.system.littleCluster.cpus, CpuPowerModel)return root[...]

五、Stat dump frequency

默认情况下,gem5每模拟一秒钟就将模拟统计信息转储到stats.txt文件中。可以通过m5.stats.periodicStatDump函数进行控制,该函数接受以模拟时钟周期为单位的统计信息转储频率,而不是以秒为单位。同时,m5.ticks提供了一个fromSeconds函数,以便于使用。

下面是一个示例,展示了统计信息转储频率如何影响结果的分辨率,取自Sascha Bischoff的演示幻灯片第16页:

统计信息转储的频率直接影响基于stats.txt文件生成的图表的分辨率。然而,它也会影响输出文件的大小。每模拟一秒转储统计信息与每模拟一毫秒转储统计信息相比,会增加文件大小几百倍。因此,有意控制统计信息转储频率是合理的。

使用提供的fs_power.py脚本,可以按以下方式进行设置:

[...]def addOptions(parser):[...]parser.add_argument("--stat-freq", type=float, default=1.0,help="Frequency (in seconds) to dump stats to the ""'stats.txt' file. Supports scientific notation, ""e.g. '1.0E-3' for milliseconds.")return parser[...]def main():[...]m5.stats.periodicStatDump(m5.ticks.fromSeconds(options.stat_freq))bL.run()[...]

可以使用以下方式指定统计信息转储频率:

--stat-freq <val>

在调用模拟时进行设置。

六、Common Problems

使用提供的fs_power.py时,gem5崩溃,并显示以下错误消息:致命错误:统计信息''(160)未通过regStats()函数正确初始化
使用提供的fs_power.py时,gem5崩溃,并显示以下错误消息:致命错误:无法评估功耗表达式:[...]
这是因为gem5的统计框架最近进行了重构。获取最新版本的gem5源代码并重新构建应该可以解决这个问题。如果不希望这样做,可以使用以下两组补丁:

​​​​​​

  1. https://gem5-review.googlesource.com/c/public/gem5/+/26643
  1. https://gem5-review.googlesource.com/c/public/gem5/+/26785

可以通过按照各自链接中的下载说明来检出和应用这些补丁。

前阵子放假断更了一段时间(在家除了学习都是有意思的事情),现在逐步开始捡起学习状态。

这篇关于gem5学习(17):ARM功耗建模——ARM Power Modelling的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/686280

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件