用实际案例来理解netstat -nao中的Recv-Q和Send-Q

2024-02-06 12:18

本文主要是介绍用实际案例来理解netstat -nao中的Recv-Q和Send-Q,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       我们先来看看:

 

xxxxxx$ netstat -ano | head             
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address           Foreign Address         State       Timer
tcp        0      0 127.0.0.1:42222         0.0.0.0:*               LISTEN      off (0.00/0/0)
tcp        0      0 10.100.70.140:48369     0.0.0.0:*               LISTEN      off (0.00/0/0)
tcp        0      0 10.100.70.140:13942     0.0.0.0:*               LISTEN      off (0.00/0/0)
tcp        0      0 10.100.70.140:10586     0.0.0.0:*               LISTEN      off (0.00/0/0)
tcp        0      0 10.100.70.140:63227     0.0.0.0:*               LISTEN      off (0.00/0/0)
tcp        0      0 0.0.0.0:8765            0.0.0.0:*               LISTEN      off (0.00/0/0)
tcp        0      0 10.100.70.140:20126     0.0.0.0:*               LISTEN      off (0.00/0/0)
tcp        0      0 10.100.70.140:23456     0.0.0.0:*               LISTEN      off (0.00/0/0)

       第二列表内核recv缓冲区中的字节数(接收缓冲区), 第三列表示内核send缓冲区中的字节数(发送缓冲区)。 所以, 对于一个tcp连接的两端而言, 有四个内核缓冲区。

 

 

       来看程序, 服务端:

 

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <errno.h>
#include <malloc.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/ioctl.h>
#include <stdarg.h>
#include <fcntl.h>int main()
{int sockSrv = socket(AF_INET, SOCK_STREAM, 0);struct sockaddr_in addrSrv;addrSrv.sin_family = AF_INET;addrSrv.sin_addr.s_addr = INADDR_ANY; addrSrv.sin_port = htons(8765);bind(sockSrv, (const struct sockaddr *)&addrSrv, sizeof(struct sockaddr_in));listen(sockSrv, 5);struct sockaddr_in addrClient;int len = sizeof(struct sockaddr_in);int sockConn = accept(sockSrv, (struct sockaddr *)&addrClient, (socklen_t*)&len);while(1)    {    getchar();    char szRecvBuf[1001] = {0};    int iRet = recv(sockConn, szRecvBuf, sizeof(szRecvBuf) - 1, 0);    printf("iRet is %d\n", iRet);     }getchar();close(sockConn);close(sockSrv);return 0;
}

       客户端:

 

 

#include <unistd.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <errno.h>
#include <malloc.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/ioctl.h>
#include <stdarg.h>
#include <fcntl.h>int main()
{int sockClient = socket(AF_INET, SOCK_STREAM, 0);struct sockaddr_in addrSrv;addrSrv.sin_addr.s_addr = inet_addr("10.100.70.140");addrSrv.sin_family = AF_INET;addrSrv.sin_port = htons(8765);connect(sockClient, ( const struct sockaddr *)&addrSrv, sizeof(struct sockaddr_in));#define N 2000char szSendBuf[N] = {0};for(unsigned int i = 0; i < N; i++) //×Ö·ûÊý×é×îºóÒ»¸ö×Ö·û²»ÒªÇóÊÇ¡®\0¡¯{szSendBuf[i] = 'a';	}int total = 0;while(1){int iRet = send(sockClient, szSendBuf, sizeof(szSendBuf) , 0); total += iRet;printf("iRet is %d, total send is %d\n", iRet, total);getchar();}close(sockClient);return 0;
}

       我们先开启服务端, 再看起客户端, 此时客户端给服务端发送了2000字节, 但服务端没有去取出这2000字节, 我们来看看服务端的情况:

 

 

xxxxxx$ netstat -ano | grep 8765
tcp        0      0 0.0.0.0:8765            0.0.0.0:*               LISTEN      off (0.00/0/0)
tcp     2000      0 10.100.70.140:8765      10.100.70.139:43634     ESTABLISHED off (0.00/0/0)

       再看看客户端, 客户端都发送完了, 没有字节积压, 所以发送缓冲区中么有字节, 如下:

 

xxxxxx$ netstat -ano | grep 8765
tcp        0      0 10.100.70.139:43634     10.100.70.140:8765      ESTABLISHED off (0.00/0/0)

       
        此时, 如果我们在服务端用recv函数取出1000字节, 会怎样呢?  显然, 内核缓冲区中还剩100字节, 如下:

 

xxxxxx$ netstat -ano | grep 8765
tcp        0      0 0.0.0.0:8765            0.0.0.0:*               LISTEN      off (0.00/0/0)
tcp     1000      0 10.100.70.140:8765      10.100.70.139:43634     ESTABLISHED off (0.00/0/0)

 


        如何才能在客户端上看到内核缓冲区中的数据呢? 很简单, 让客户端一只发发发, 服务端的内核缓冲区数据塞满后, 自然开始在客户端的内核缓冲区积压了。 有兴趣的朋友可以试试, 这对理解tcp很有帮助。

 

 

       

 


 

这篇关于用实际案例来理解netstat -nao中的Recv-Q和Send-Q的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/684282

相关文章

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2

从入门到精通MySQL 数据库索引(实战案例)

《从入门到精通MySQL数据库索引(实战案例)》索引是数据库的目录,提升查询速度,主要类型包括BTree、Hash、全文、空间索引,需根据场景选择,建议用于高频查询、关联字段、排序等,避免重复率高或... 目录一、索引是什么?能干嘛?核心作用:二、索引的 4 种主要类型(附通俗例子)1. BTree 索引(

HTML中meta标签的常见使用案例(示例详解)

《HTML中meta标签的常见使用案例(示例详解)》HTMLmeta标签用于提供文档元数据,涵盖字符编码、SEO优化、社交媒体集成、移动设备适配、浏览器控制及安全隐私设置,优化页面显示与搜索引擎索引... 目录html中meta标签的常见使用案例一、基础功能二、搜索引擎优化(seo)三、社交媒体集成四、移动