【Iceberg学习三】Reporting和Partitioning原理

2024-02-06 05:52

本文主要是介绍【Iceberg学习三】Reporting和Partitioning原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Metrics Reporting

Type of Reports

从 1.1.0 版本开始,Iceberg 支持 MetricsReporter 和 MetricsReport API。这两个 API 允许表达不同的度量报告,并支持一种可插拔的方式来报告这些报告。

ScanReport(扫描报告)

扫描报告(ScanReport)记录了在对一个给定表进行扫描规划时收集的度量指标。除了包含一些关于该表的一般信息,如快照 ID 或表名,它还包括以下度量指标:

  • 总扫描规划持续时间
  • 结果中包含的数据/删除文件数量
  • 扫描/跳过的数据/删除清单文件数量
  • 扫描/跳过的数据/删除文件数量
  • 扫描的等值/位置删除文件数量
CommitReport(提交报告)

提交报告记录了在提交对表的更改(也就是生成快照)之后收集的度量指标。除了包含一些关于该表的一般信息,如快照 ID 或表名,它还包括以下度量指标:

  • 总持续时间
  • 提交成功所需的尝试次数
  • 增加/移除的数据/删除文件数量
  • 增加/移除的等值/位置删除文件数量
  • 增加/移除的等值/位置删除操作数量

Available Metrics Reporters

LoggingMetricsReporter

这是在没有配置其他指标报告器时的默认指标报告器,其目的是将结果记录到日志文件中。示例输出如下所示:

INFO org.apache.iceberg.metrics.LoggingMetricsReporter - Received metrics report: 
ScanReport{tableName=scan-planning-with-eq-and-pos-delete-files, snapshotId=2, filter=ref(name="data") == "(hash-27fa7cc0)", schemaId=0, projectedFieldIds=[1, 2], projectedFieldNames=[id, data], scanMetrics=ScanMetricsResult{totalPlanningDuration=TimerResult{timeUnit=NANOSECONDS, totalDuration=PT0.026569404S, count=1}, resultDataFiles=CounterResult{unit=COUNT, value=1}, resultDeleteFiles=CounterResult{unit=COUNT, value=2}, totalDataManifests=CounterResult{unit=COUNT, value=1}, totalDeleteManifests=CounterResult{unit=COUNT, value=1}, scannedDataManifests=CounterResult{unit=COUNT, value=1}, skippedDataManifests=CounterResult{unit=COUNT, value=0}, totalFileSizeInBytes=CounterResult{unit=BYTES, value=10}, totalDeleteFileSizeInBytes=CounterResult{unit=BYTES, value=20}, skippedDataFiles=CounterResult{unit=COUNT, value=0}, skippedDeleteFiles=CounterResult{unit=COUNT, value=0}, scannedDeleteManifests=CounterResult{unit=COUNT, value=1}, skippedDeleteManifests=CounterResult{unit=COUNT, value=0}, indexedDeleteFiles=CounterResult{unit=COUNT, value=2}, equalityDeleteFiles=CounterResult{unit=COUNT, value=1}, positionalDeleteFiles=CounterResult{unit=COUNT, value=1}}, metadata={iceberg-version=Apache Iceberg 1.4.0-SNAPSHOT (commit 4868d2823004c8c256a50ea7c25cff94314cc135)}}
INFO org.apache.iceberg.metrics.LoggingMetricsReporter - Received metrics report: 
CommitReport{tableName=scan-planning-with-eq-and-pos-delete-files, snapshotId=1, sequenceNumber=1, operation=append, commitMetrics=CommitMetricsResult{totalDuration=TimerResult{timeUnit=NANOSECONDS, totalDuration=PT0.098429626S, count=1}, attempts=CounterResult{unit=COUNT, value=1}, addedDataFiles=CounterResult{unit=COUNT, value=1}, removedDataFiles=null, totalDataFiles=CounterResult{unit=COUNT, value=1}, addedDeleteFiles=null, addedEqualityDeleteFiles=null, addedPositionalDeleteFiles=null, removedDeleteFiles=null, removedEqualityDeleteFiles=null, removedPositionalDeleteFiles=null, totalDeleteFiles=CounterResult{unit=COUNT, value=0}, addedRecords=CounterResult{unit=COUNT, value=1}, removedRecords=null, totalRecords=CounterResult{unit=COUNT, value=1}, addedFilesSizeInBytes=CounterResult{unit=BYTES, value=10}, removedFilesSizeInBytes=null, totalFilesSizeInBytes=CounterResult{unit=BYTES, value=10}, addedPositionalDeletes=null, removedPositionalDeletes=null, totalPositionalDeletes=CounterResult{unit=COUNT, value=0}, addedEqualityDeletes=null, removedEqualityDeletes=null, totalEqualityDeletes=CounterResult{unit=COUNT, value=0}}, metadata={iceberg-version=Apache Iceberg 1.4.0-SNAPSHOT (commit 4868d2823004c8c256a50ea7c25cff94314cc135)}}
RESTMetricsReporter

当使用 RESTCatalog 时,这是默认配置,其目的是将指标发送到 REST 服务器,在 /v1/{prefix}/namespaces/{namespace}/tables/{table}/metrics 端点,如 REST OpenAPI 规范中所定义。

通过 REST 发送指标可以通过 rest-metrics-reporting-enabled(默认为 true)属性进行控制。

Implementing a custom Metrics Reporter

实现 MetricsReporter API 在处理传入的 MetricsReport 实例时提供了完全的灵活性。例如,可以将结果发送到 Prometheus 端点或任何其他可观测性框架/系统。

下面是一个简短的示例,说明了一个 InMemoryMetricsReporter,它将报告存储在一个列表中并使其可用:

public class InMemoryMetricsReporter implements MetricsReporter {private List<MetricsReport> metricsReports = Lists.newArrayList();@Overridepublic void report(MetricsReport report) {metricsReports.add(report);}public List<MetricsReport> reports() {return metricsReports;}
}

Registering a custom Metrics Reporter

Via Catalog Configuration

目录属性 metrics-reporter-impl 通过指定其完全限定类名来允许注册一个指定的 MetricsReporter,例如 metrics-reporter-impl=org.apache.iceberg.metrics.InMemoryMetricsReporter。

Via the Java API during Scan planning

即使已经通过 metrics-reporter-impl 属性在目录级别注册了 MetricsReporter,也可以在扫描规划期间提供额外的报告器,如下所示:

TableScan tableScan = table.newScan().metricsReporter(customReporterOne).metricsReporter(customReporterTwo);try (CloseableIterable<FileScanTask> fileScanTasks = tableScan.planFiles()) {// ...
}

Partitioning(分区)

什么是分区

分区是一种通过在写入时将相似的行分组在一起来加速查询的方法。

例如,从日志表查询日志条目通常会包含一个时间范围,就像这个查询在上午10点到12点之间的日志:

SELECT level, message FROM logs
WHERE event_time BETWEEN '2018-12-01 10:00:00' AND '2018-12-01 12:00:00';

将日志表配置为按 event_time 的日期进行分区,将把具有相同事件日期的日志事件分组到同一个文件中。Iceberg 跟踪那个日期,并将使用它来跳过其他没有有用数据的日期的文件。

Iceberg 可以按年、月、日和小时的粒度来分区时间戳。它还可以使用分类列,比如在这个日志示例中的 level,将行存储在一起以加速查询。

iceberg做了什么不一样的地方

其他表格格式如 Hive 支持分区,但 Iceberg 支持隐藏分区。

  1. Iceberg 处理了表中行生成分区值的繁琐且容易出错的任务。
  2. Iceberg 自动避免读取不必要的分区。使用者无需知晓表是如何分区的,也无需在他们的查询中添加额外的过滤器。
  3. Iceberg 的分区布局可以根据需要进行演变。

HIVE中的分区

为了演示差异,考虑一下 Hive 将如何处理日志表。

在 Hive 中,分区是显式的并且表现为一个列,所以日志表会有一个名为 event_date 的列。在写入时,插入操作需要为 event_date 列提供数据:

INSERT INTO logs PARTITION (event_date)SELECT level, message, event_time, format_time(event_time, 'YYYY-MM-dd')FROM unstructured_log_source;

同样,搜索日志表的查询除了需要一个 event_time 过滤器外,还必须有一个 event_date 过滤器。

SELECT level, count(1) as count FROM logs
WHERE event_time BETWEEN '2018-12-01 10:00:00' AND '2018-12-01 12:00:00'AND event_date = '2018-12-01';

如果缺少 event_date 过滤器,Hive 会扫描表中的每一个文件,因为它不知道 event_time 列与 event_date 列之间的关系。

Hive分区方式的问题

Hive 必须被给定分区值。在日志示例中,它不知道 event_time 和 event_date 之间的关系。

这导致了几个问题:

  1. Hive 不能验证分区值 —— 正确值的产生取决于写入者
  2. 使用错误的格式,例如使用 2018-12-01 而不是 20181201,会导致悄无声息的错误结果,而不是查询失败
  3. 使用错误的源列,如 processing_time,或者错误的时区,也会导致错误的结果,而不是失败
  4. 用户需要正确编写查询
  5. 使用错误的格式也会导致悄无声息的错误结果
  6. 不理解表的物理布局的用户会遇到不必要的慢查询 —— Hive 不能自动转换过滤器
  7. 正常工作的查询与表的分区方案绑定,因此分区配置不能在不破坏查询的情况下更改

Iceberg的隐藏分区

Iceberg 通过获取列值并可选择对其进行转换来产生分区值。Iceberg 负责将 event_time 转换为 event_date,并跟踪这种关系。

表的分区是使用这些关系来配置的。日志表将按照 date(event_time) 和 level 来进行分区。

因为 Iceberg 不要求用户维护分区列,所以它可以隐藏分区。分区值每次都能正确产生,并且总是在可能的情况下用于加速查询。生产者和消费者甚至可能看不到 event_date。

最重要的是,查询不再依赖于表的物理布局。有了物理和逻辑之间的分离,Iceberg 表可以随着数据量的变化,随时间演进其分区方案。配置错误的表可以在不进行昂贵迁移的情况下修复。

有关所有支持的隐藏分区转换的详细信息,请参阅分区转换部分。

有关更新表的分区规范的详细信息,请参阅分区演化部分。

这篇关于【Iceberg学习三】Reporting和Partitioning原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/683328

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识