【Iceberg学习三】Reporting和Partitioning原理

2024-02-06 05:52

本文主要是介绍【Iceberg学习三】Reporting和Partitioning原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Metrics Reporting

Type of Reports

从 1.1.0 版本开始,Iceberg 支持 MetricsReporter 和 MetricsReport API。这两个 API 允许表达不同的度量报告,并支持一种可插拔的方式来报告这些报告。

ScanReport(扫描报告)

扫描报告(ScanReport)记录了在对一个给定表进行扫描规划时收集的度量指标。除了包含一些关于该表的一般信息,如快照 ID 或表名,它还包括以下度量指标:

  • 总扫描规划持续时间
  • 结果中包含的数据/删除文件数量
  • 扫描/跳过的数据/删除清单文件数量
  • 扫描/跳过的数据/删除文件数量
  • 扫描的等值/位置删除文件数量
CommitReport(提交报告)

提交报告记录了在提交对表的更改(也就是生成快照)之后收集的度量指标。除了包含一些关于该表的一般信息,如快照 ID 或表名,它还包括以下度量指标:

  • 总持续时间
  • 提交成功所需的尝试次数
  • 增加/移除的数据/删除文件数量
  • 增加/移除的等值/位置删除文件数量
  • 增加/移除的等值/位置删除操作数量

Available Metrics Reporters

LoggingMetricsReporter

这是在没有配置其他指标报告器时的默认指标报告器,其目的是将结果记录到日志文件中。示例输出如下所示:

INFO org.apache.iceberg.metrics.LoggingMetricsReporter - Received metrics report: 
ScanReport{tableName=scan-planning-with-eq-and-pos-delete-files, snapshotId=2, filter=ref(name="data") == "(hash-27fa7cc0)", schemaId=0, projectedFieldIds=[1, 2], projectedFieldNames=[id, data], scanMetrics=ScanMetricsResult{totalPlanningDuration=TimerResult{timeUnit=NANOSECONDS, totalDuration=PT0.026569404S, count=1}, resultDataFiles=CounterResult{unit=COUNT, value=1}, resultDeleteFiles=CounterResult{unit=COUNT, value=2}, totalDataManifests=CounterResult{unit=COUNT, value=1}, totalDeleteManifests=CounterResult{unit=COUNT, value=1}, scannedDataManifests=CounterResult{unit=COUNT, value=1}, skippedDataManifests=CounterResult{unit=COUNT, value=0}, totalFileSizeInBytes=CounterResult{unit=BYTES, value=10}, totalDeleteFileSizeInBytes=CounterResult{unit=BYTES, value=20}, skippedDataFiles=CounterResult{unit=COUNT, value=0}, skippedDeleteFiles=CounterResult{unit=COUNT, value=0}, scannedDeleteManifests=CounterResult{unit=COUNT, value=1}, skippedDeleteManifests=CounterResult{unit=COUNT, value=0}, indexedDeleteFiles=CounterResult{unit=COUNT, value=2}, equalityDeleteFiles=CounterResult{unit=COUNT, value=1}, positionalDeleteFiles=CounterResult{unit=COUNT, value=1}}, metadata={iceberg-version=Apache Iceberg 1.4.0-SNAPSHOT (commit 4868d2823004c8c256a50ea7c25cff94314cc135)}}
INFO org.apache.iceberg.metrics.LoggingMetricsReporter - Received metrics report: 
CommitReport{tableName=scan-planning-with-eq-and-pos-delete-files, snapshotId=1, sequenceNumber=1, operation=append, commitMetrics=CommitMetricsResult{totalDuration=TimerResult{timeUnit=NANOSECONDS, totalDuration=PT0.098429626S, count=1}, attempts=CounterResult{unit=COUNT, value=1}, addedDataFiles=CounterResult{unit=COUNT, value=1}, removedDataFiles=null, totalDataFiles=CounterResult{unit=COUNT, value=1}, addedDeleteFiles=null, addedEqualityDeleteFiles=null, addedPositionalDeleteFiles=null, removedDeleteFiles=null, removedEqualityDeleteFiles=null, removedPositionalDeleteFiles=null, totalDeleteFiles=CounterResult{unit=COUNT, value=0}, addedRecords=CounterResult{unit=COUNT, value=1}, removedRecords=null, totalRecords=CounterResult{unit=COUNT, value=1}, addedFilesSizeInBytes=CounterResult{unit=BYTES, value=10}, removedFilesSizeInBytes=null, totalFilesSizeInBytes=CounterResult{unit=BYTES, value=10}, addedPositionalDeletes=null, removedPositionalDeletes=null, totalPositionalDeletes=CounterResult{unit=COUNT, value=0}, addedEqualityDeletes=null, removedEqualityDeletes=null, totalEqualityDeletes=CounterResult{unit=COUNT, value=0}}, metadata={iceberg-version=Apache Iceberg 1.4.0-SNAPSHOT (commit 4868d2823004c8c256a50ea7c25cff94314cc135)}}
RESTMetricsReporter

当使用 RESTCatalog 时,这是默认配置,其目的是将指标发送到 REST 服务器,在 /v1/{prefix}/namespaces/{namespace}/tables/{table}/metrics 端点,如 REST OpenAPI 规范中所定义。

通过 REST 发送指标可以通过 rest-metrics-reporting-enabled(默认为 true)属性进行控制。

Implementing a custom Metrics Reporter

实现 MetricsReporter API 在处理传入的 MetricsReport 实例时提供了完全的灵活性。例如,可以将结果发送到 Prometheus 端点或任何其他可观测性框架/系统。

下面是一个简短的示例,说明了一个 InMemoryMetricsReporter,它将报告存储在一个列表中并使其可用:

public class InMemoryMetricsReporter implements MetricsReporter {private List<MetricsReport> metricsReports = Lists.newArrayList();@Overridepublic void report(MetricsReport report) {metricsReports.add(report);}public List<MetricsReport> reports() {return metricsReports;}
}

Registering a custom Metrics Reporter

Via Catalog Configuration

目录属性 metrics-reporter-impl 通过指定其完全限定类名来允许注册一个指定的 MetricsReporter,例如 metrics-reporter-impl=org.apache.iceberg.metrics.InMemoryMetricsReporter。

Via the Java API during Scan planning

即使已经通过 metrics-reporter-impl 属性在目录级别注册了 MetricsReporter,也可以在扫描规划期间提供额外的报告器,如下所示:

TableScan tableScan = table.newScan().metricsReporter(customReporterOne).metricsReporter(customReporterTwo);try (CloseableIterable<FileScanTask> fileScanTasks = tableScan.planFiles()) {// ...
}

Partitioning(分区)

什么是分区

分区是一种通过在写入时将相似的行分组在一起来加速查询的方法。

例如,从日志表查询日志条目通常会包含一个时间范围,就像这个查询在上午10点到12点之间的日志:

SELECT level, message FROM logs
WHERE event_time BETWEEN '2018-12-01 10:00:00' AND '2018-12-01 12:00:00';

将日志表配置为按 event_time 的日期进行分区,将把具有相同事件日期的日志事件分组到同一个文件中。Iceberg 跟踪那个日期,并将使用它来跳过其他没有有用数据的日期的文件。

Iceberg 可以按年、月、日和小时的粒度来分区时间戳。它还可以使用分类列,比如在这个日志示例中的 level,将行存储在一起以加速查询。

iceberg做了什么不一样的地方

其他表格格式如 Hive 支持分区,但 Iceberg 支持隐藏分区。

  1. Iceberg 处理了表中行生成分区值的繁琐且容易出错的任务。
  2. Iceberg 自动避免读取不必要的分区。使用者无需知晓表是如何分区的,也无需在他们的查询中添加额外的过滤器。
  3. Iceberg 的分区布局可以根据需要进行演变。

HIVE中的分区

为了演示差异,考虑一下 Hive 将如何处理日志表。

在 Hive 中,分区是显式的并且表现为一个列,所以日志表会有一个名为 event_date 的列。在写入时,插入操作需要为 event_date 列提供数据:

INSERT INTO logs PARTITION (event_date)SELECT level, message, event_time, format_time(event_time, 'YYYY-MM-dd')FROM unstructured_log_source;

同样,搜索日志表的查询除了需要一个 event_time 过滤器外,还必须有一个 event_date 过滤器。

SELECT level, count(1) as count FROM logs
WHERE event_time BETWEEN '2018-12-01 10:00:00' AND '2018-12-01 12:00:00'AND event_date = '2018-12-01';

如果缺少 event_date 过滤器,Hive 会扫描表中的每一个文件,因为它不知道 event_time 列与 event_date 列之间的关系。

Hive分区方式的问题

Hive 必须被给定分区值。在日志示例中,它不知道 event_time 和 event_date 之间的关系。

这导致了几个问题:

  1. Hive 不能验证分区值 —— 正确值的产生取决于写入者
  2. 使用错误的格式,例如使用 2018-12-01 而不是 20181201,会导致悄无声息的错误结果,而不是查询失败
  3. 使用错误的源列,如 processing_time,或者错误的时区,也会导致错误的结果,而不是失败
  4. 用户需要正确编写查询
  5. 使用错误的格式也会导致悄无声息的错误结果
  6. 不理解表的物理布局的用户会遇到不必要的慢查询 —— Hive 不能自动转换过滤器
  7. 正常工作的查询与表的分区方案绑定,因此分区配置不能在不破坏查询的情况下更改

Iceberg的隐藏分区

Iceberg 通过获取列值并可选择对其进行转换来产生分区值。Iceberg 负责将 event_time 转换为 event_date,并跟踪这种关系。

表的分区是使用这些关系来配置的。日志表将按照 date(event_time) 和 level 来进行分区。

因为 Iceberg 不要求用户维护分区列,所以它可以隐藏分区。分区值每次都能正确产生,并且总是在可能的情况下用于加速查询。生产者和消费者甚至可能看不到 event_date。

最重要的是,查询不再依赖于表的物理布局。有了物理和逻辑之间的分离,Iceberg 表可以随着数据量的变化,随时间演进其分区方案。配置错误的表可以在不进行昂贵迁移的情况下修复。

有关所有支持的隐藏分区转换的详细信息,请参阅分区转换部分。

有关更新表的分区规范的详细信息,请参阅分区演化部分。

这篇关于【Iceberg学习三】Reporting和Partitioning原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/683328

相关文章

Java线程池核心参数原理及使用指南

《Java线程池核心参数原理及使用指南》本文详细介绍了Java线程池的基本概念、核心类、核心参数、工作原理、常见类型以及最佳实践,通过理解每个参数的含义和工作原理,可以更好地配置线程池,提高系统性能,... 目录一、线程池概述1.1 什么是线程池1.2 线程池的优势二、线程池核心类三、ThreadPoolE

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

Java 队列Queue从原理到实战指南

《Java队列Queue从原理到实战指南》本文介绍了Java中队列(Queue)的底层实现、常见方法及其区别,通过LinkedList和ArrayDeque的实现,以及循环队列的概念,展示了如何高效... 目录一、队列的认识队列的底层与集合框架常见的队列方法插入元素方法对比(add和offer)移除元素方法

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

Spring IOC核心原理详解与运用实战教程

《SpringIOC核心原理详解与运用实战教程》本文详细解析了SpringIOC容器的核心原理,包括BeanFactory体系、依赖注入机制、循环依赖解决和三级缓存机制,同时,介绍了SpringBo... 目录1. Spring IOC核心原理深度解析1.1 BeanFactory体系与内部结构1.1.1

MySQL 批量插入的原理和实战方法(快速提升大数据导入效率)

《MySQL批量插入的原理和实战方法(快速提升大数据导入效率)》在日常开发中,我们经常需要将大量数据批量插入到MySQL数据库中,本文将介绍批量插入的原理、实现方法,并结合Python和PyMySQ... 目录一、批量插入的优势二、mysql 表的创建示例三、python 实现批量插入1. 安装 PyMyS

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node