页面单跳转换率统计案例分析

2024-02-06 03:44

本文主要是介绍页面单跳转换率统计案例分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

需求说明

页面单跳转化率

        计算页面单跳转化率,什么是页面单跳转换率,比如一个用户在一次 Session 过程中访问的页面路径 3,5,7,9,10,21,那么页面 3 跳到页面 5 叫一次单跳,7-9 也叫一次单跳, 那么单跳转化率就是要统计页面点击的概率。 比如:计算 3-5 的单跳转化率,先获取符合条件的 Session 对于页面 3 的访问次数(PV) 为 A,然后获取符合条件的 Session 中访问了页面 3 又紧接着访问了页面 5 的次数为 B, 那么 B/A 就是 3-5 的页面单跳转化率。

 功能实现

        数据准备:

 // TODO : Top10热门品类val sparkConf = new SparkConf().setMaster("local").setAppName("HotCategoryTop10Analysis")val sc = new SparkContext(sparkConf)val actionRDD = sc.textFile("data/user_visit_action.txt")

        data/user_visit_action.txt :

         定义一个用户访问动作类:

case class UserVisitAction(date: String,//用户点击行为的日期user_id: Long,//用户的 IDsession_id: String,//session 的 IDpage_id: Long,//某个页面的 IDaction_time: String,//动作的时间点search_keyword: String,//用户搜索的关键词click_category_id: Long,//某一个商品品类的 IDclick_product_id: Long,//某一个商品的 IDorder_category_ids: String,//一次订单中所有品类的 ID 集合order_product_ids: String,//一次订单中所有商品的 ID 集合pay_category_ids: String,//一次支付中所有品类的 ID 集合pay_product_ids: String,//一次支付中所有商品的 ID 集合city_id: Long //城市 id)

        然后将每行数据封装成UserVisitAction对象,运用map转换算子:

val actionDateRDD = actionRDD.map( //每行数据封装成UserVisitAction对象action => {val datas = action.split("_")UserVisitAction(datas(0),datas(1).toLong,datas(2),datas(3).toLong,datas(4),datas(5),datas(6).toLong,datas(7).toLong,datas(8),datas(9),datas(10),datas(11),datas(12).toLong)})

        由于统计所有的页面跳转数据量过于庞大,这里就指定一下:

//TODO 对指定页面连续跳转进行统计//1-2,2-3,3-4,4-5,5-6,6-7val ids = List[Long](1, 2, 3, 4, 5, 6, 7)val okflowIds = ids.zip(ids.tail) //List((1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7))

        接下来统计每个页面的被查看的次数,也就是分母,actionDateRDD里面封装的是一个个UserVisitAction对象,运用filter转换算子过滤出List所包含的页面,再用map转换算子将一个UserVisitAction对象转换成(action.page_id, 1L),便于后续的reduceByKey作统计,而toMap方法是将RDD中的数据转换为一个Map对象,需要将所有的数据收集到Driver端,并在Driver端构建Map对象。因此,需要使用collect方法将RDD中的数据拉取到Driver端的内存中,以便在Driver端进行toMap操作。

//TODO 计算分母(计算每个页面的被查看的次数)val pageidToCountMap = actionDateRDD.filter( //过滤出List里面的页面action => {ids.contains(action.page_id)}).map(action => {(action.page_id, 1L)}).reduceByKey(_ + _).collect().toMapprintln("pageidToCountMap: ")pageidToCountMap.foreach(println)

        接下来统计分子,首先根据session_Id进行分组:

val sessionRDD = actionDateRDD.groupBy(_.session_id)

        再将UserVisitAction对象根据访问时间action_time排序,然后用map算子只保留对象的page_id,再用zip拉链:

 val mvRDD = sessionRDD.mapValues(iter => {val sortList = iter.toList.sortBy(_.action_time)val flowIds = sortList.map(_.page_id)val pageflowIds = flowIds.zip(flowIds.tail)

将不满足条件的页面跳转进行过滤:

val mvRDD = sessionRDD.mapValues(iter => {val sortList = iter.toList.sortBy(_.action_time)val flowIds = sortList.map(_.page_id)val pageflowIds = flowIds.zip(flowIds.tail)//将不合法的页面跳转进行过滤pageflowIds.filter(t=>{okflowIds.contains(t)}).map(t => {(t, 1)})})

 mvRDD大致格式长这样:

        sessionid对于我们来说没有用,只需计算后面的页面跳转内容即可,用map算子处理,再用flatmap扁平化处理,便于后续的reduceByKey聚合:

 //((1,2),1)val flatRDD = mvRDD.map(_._2).flatMap(list => list)//((1,2),sum)val dataRDD = flatRDD.reduceByKey(_ + _)

最终计算:

//计算单跳转换率 分子/分母dataRDD.foreach{case ((page1,page2),sum)=>{val cnt = pageidToCountMap.getOrElse(page1, 0L)println(s"页面${page1}到页面${page2}单跳转换率为: "+(sum.toDouble/cnt))}}

这篇关于页面单跳转换率统计案例分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/683040

相关文章

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2