Verilog实现2进制码与BCD码的互相转换

2024-02-05 18:52

本文主要是介绍Verilog实现2进制码与BCD码的互相转换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、什么是BCD码?

BCD码是一种2进制的数字编码形式,用4位2进制数来表示1位10进制中的0~9这10个数。这种编码技术,最常用于会计系统的设计里,因为会计制度经常需要对很长的数字做准确的计算。相对于一般的浮点式记数法,采用BCD码,既可保存数值的精确度,又可使电脑免除作浮点运算所耗费的时间。此外,对于其他需要高精确度的计算,BCD编码也很常用。

常见的BCD码有很多种形式,比如8421码、2421码、5421码、余3码等等,其中最常用的是8421码,接下来的讨论都建立在8421BCD码的基础上。

BCD码的一个很大的优势是可以很方便的用2进制来显示10进制数。比如10进制数15如果用2进制存储,就是1111,也就是16进制的F,如果它显示在数码管上是“F”,但是这种显示方式对我们来说其实并不友好,我们更习惯地还是“1 5”。
在这里插入图片描述
而BCD码存储10进制数15,则需要8位,高4位存储十位“1”,低四位存储个位“5”,也就是“0001”和“1001”,这样就可以做到把“1”和“5”这两个数字分别显示了:
在这里插入图片描述
BCD码的一般形式如下:

十进制数BCD码
00 0 0 0
10 0 0 1
20 0 1 0
30 0 1 1
40 1 0 0
50 1 0 1
60 1 1 0
70 1 1 1
81 0 0 0
91 0 0 1

2、2进制码转BCD码

如何将2进制码转换为BCD码?4位的转换相对简单,只要根据数值的大小加6就可以了。因为4位二进制码可以表示0-15这16个数,而BCD码只能表示0-9这10个数。也就是说4位2进制数逢16进位,而4位BCD逢10进位,所以需要加6这个差值来给它人工进位。比如4位2进制数1111(10进制15),加上6后,为1111+1010 = 1_1001,高位可以视作补齐3个0,即0001_1001,0001表示1,1001表示5。

2.1、除法和取模

加6修正法只适用于4位的转换,位数高了以后,这个方法就不适用了。比如1_1111(F)加上6后,显然就没用。

多位数的2进制码转BCD码有一种很容易想到的办法:利用除法和取模。比如8位2进制数可以表示的范围是0~255,那么就可以用3个4bit数来分别表示个位、十位和百位。以255为例:

个位 = 255%10 = 5;

十位 = 255% 100 / 10 = 55/10 = 5;

百位 = 255/100 = 2;

这种方法在逻辑上理解起来非常简单,但是有个很大的缺点就是涉及到了除法和取模操作。众所周知,用FPGA做除法和取模操作将消耗大量的逻辑资源,而且时序也容易跑不高。下面是这种方法的RTL:

`timescale 1 ns/1 ns 
module test(input	[7 :0] 	bin,output	[11:0] 	bcd
);wire	[3:0]	ones,tens,huns; assign ones = bin % 10;
assign tens = bin % 100 / 10;
assign huns = bin / 100;
assign bcd = {huns,tens,ones};endmodule

这样综合出来的电路确实面积不小,一共用了27个LUT逻辑级数5级
在这里插入图片描述
编写Testbench对电路进行测试:

`timescale 1 ns/1 ns 
module tb_test;reg [7:0] 	bin;
wire [11:0] bcd;integer 	i,j;
reg [8:0] 	err;				//错误计数器
reg	[11:0]	bcd_true[0:255];	//进行对比的正确输出//例化被测试模块
test u_test (.bin	(bin), .bcd	(bcd)
);//生成做对比的正确输出
initial beginfor(j=0;j<256;j=j+1)beginbcd_true[j][3 :0] = j % 10;bcd_true[j][7 :4] = j % 100 / 10;bcd_true[j][11:8] = j / 100;end 
end//生成测试激励
initial beginerr = 0;for(i=0;i<256;i=i+1)beginbin = i; #10; if(bcd_true[bin] != bcd )begin		//如果转换有误$display("%3d is Wrong!",bin);	//打印错误输入err = err + 1;					//统计错误个数end			end $display("Test Complete!%3d errs!",err);//打印结束仿真信息,并输出错误个数$stop; 	//结束仿真
endendmodule

这个TB文件添加了自动对比机制,所以我们只需要关注窗口打印的信息:
在这里插入图片描述
稍微看下波形也可以知道,仿真结果是没问题的(bin是10进制显示,bcd是16进制显示):
在这里插入图片描述

2.2、查找表法

位数不多的情况下还有一种更简单的方法–查找表法。查找表法的原理很简单,把所有输入所对应的输出都放到一个ROM里边存起来,然后通过地址寻址方式来取值就行了。比如5位2进制数的转换则只需要储存0~31这32个数值就行,8位2进制数也只需要存储256个数值。

下面是用查找表法写的8位2进制数转BCD的代码,需要注意的是,由于篇幅过长,省去了部分代码,而且为了有对比,故意把最后两个数即8‘d254和8‘d255的输出弄成了错误输出。

module test(input		[7:0] 	bin,output	reg	[11:0] 	bcd
);always @(*)begincase(bin)8'd  0:bcd=12'b000000000000;8'd  1:bcd=12'b000000000001;8'd  2:bcd=12'b000000000010;//这里开始省略了很多次赋值8'd254:bcd=12'b001001010000;	//这里是故意弄错了8'd255:bcd=12'b001001010001;	//这里是故意弄错了	default:bcd=12'b000000000000;endcase        
end  endmodule 		

除了采用case语句赋值的方式外,还有很多其他实现查找表的方式,比如例化ROM,或者用综合属性执行生成DRAM等。这样综合出来的电路结构用了13个LUT+4个MUX,比起之前的方法(27个LUT)少用了很多资源。
在这里插入图片描述
仿真用同样的TB就行,这是仿真结果:
在这里插入图片描述
因为之前故意把8‘d254和8‘d255这两个数弄错了,所以这里检测到了并打印了出来,其他仿真结果无误。

2.3、Double dabble(移位加3法)

4位二进制大于15才进位,而BCD码是大于9就进位,若4位二进制大于9时进位,这样得到的就是15的BCD码,因此将大于9的四位二进制数加6就能得到其BCD码。对于大于四位的二进制数,通过左移,逢9加6进位,即可转换任意位的二进制数,比如说,对于5位二进制数,由高4位二进制数左移一位得到,那么将前4位得到的BCD码也左移一位,并重新判断低四位是否大于4,若大于4,则加3进位,即可得到5位二进制数对应的BCD码。这种算法叫Double dabble,中文叫移位加3法
在这里插入图片描述
上图展示了这种方法的详细过程,二进制数1111_1111(10进制数255)从高位开始依次向左移位,移入到3个4bit组成的12位寄存器了,然后判断每个4bit是否大于4,若是则+3修正,然后继续移位。判断大于4是因为左移相当于乘以2,实际上就是在判断是否大于10产生了进位,而+3经过左移后会变成+6,同样是对2进制与BCD不同位进位所进行的修正。

所以这一过程是:从高位开始移位>>判断每个4bit是否大于4,若是则加3>>重复操作,直到所有位都被移出。

下面以8位2进制数转BCD为例,它的过程应该是这样的:
在这里插入图片描述

在这个电路中,Adder模块实现输入大于4就加3进位的功能

0和高3位构成左移3次后的低四位,经过Adder1模块后,得到调整后的数据

其他位类推

最后,在高位填0并与最低位的a0构成最终左移八次的十二位数据

首先设计大于4就加3模块:

//如果大于4就+3
module add3_g4(input		[3 : 0]	in,output reg	[3 : 0]	out
);//利用查找表实现+3操作
always @ (*) begincase (in) 4'b0000 : out = 4'b0000;4'b0001 : out = 4'b0001;4'b0010 : out = 4'b0010;4'b0011 : out = 4'b0011;4'b0100 : out = 4'b0100;4'b0101 : out = 4'b1000;4'b0110 : out = 4'b1001;4'b0111 : out = 4'b1010;4'b1000 : out = 4'b1011;4'b1001 : out = 4'b1100;default : out = 4'b0000;endcase
end
endmodule 

然后是主模块(其实就是模块化设计方法,简称连连看)

module test(input		[7:0] 	bin,output		[11:0] 	bcd
);wire [3 : 0] t1, t2, t3, t4, t5, t6, t7;add3_g4 adder1(.in	({1'b0, bin[7 : 5]}),.out(t1[3 : 0])
);
add3_g4 adder2(.in	({t1[2 : 0], bin[4]}),.out(t2[3 : 0])
);
add3_g4 adder3(.in({t2[2 : 0], bin[3]}),.out(t3[3 : 0])
);
add3_g4 adder4(.in({1'b0, t1[3], t2[3], t3[3]}),.out(t4[3 : 0])
);
add3_g4 adder5(.in({t3[2 : 0], bin[2]}),.out(t5[3 : 0])
);
add3_g4 adder6(.in({t4[2 : 0], t5[3]}),.out(t6[3 : 0])
);
add3_g4 adder7(.in({t5[2 : 0], bin[1]}),.out(t7[3 : 0])
);assign bcd = {2'b0, t4[3], t6[3 : 0], t7[3 : 0], bin[0]};endmodule

这种方法综合出来只用了10个LUT,资源消耗甚至比查找表法还少。
在这里插入图片描述
再用同样的TB仿真,仿真结果表明这个设计没问题:
在这里插入图片描述
这种模块化的设计方法有2个很不好的地方

  1. 不够抽象,需要把图画出来才能理解
  2. 几乎没有可拓展性,如果改变位数则RTL需要大改

所以接下来,设计一个位宽可变的、抽象程度更高的电路:

module test
#( parameter	W = 8	//输入位宽可变
)  					
( input		[W-1 :0] 		bin,	output reg	[W+(W-4)/3:0]	bcd   
); 					integer i,j;	//循环参数always @(*) beginfor(i = 0; i <= W+(W-4)/3; i = i+1) bcd[i] = 0;     	//用全0初始化bcd[W-1:0] = bin; 		//低位用输入替换for(i = 0; i <= W-4; i = i+1)                       	for(j = 0; j <= i/3; j = j+1)                     	if (bcd[W-i+4*j -: 4] > 4)	//如果大于4bcd[W-i+4*j -: 4] = bcd[W-i+4*j -: 4] + 4'd3; //+3
endendmodule

这样综合出来的电路面积也很小,只用了11个LUT:
在这里插入图片描述
使用这个模块的时候需要注意的一点是,它的输出参数化设计是设计得最小的模块。比如8位2进制数最大为255,实际上用10个bit的BCD码就可以表示,但是我们一般习惯用12个bit来表示,所以可以在最后的结果前面补0。

2.4、使用资源对比

将输入位数扩大到16位2进制数的转换,再分别使用3个方法构建电路,观察资源消耗情况:

除法和取模查找表移位加3
287个LUT23220个LUT或者36个BRAM71个LUT

可以看到随着输入位数的增加,移位加3法的优势就更明显。一般来讲。查找表法适合位数不多的情况;而直接用除法则非常省事,适合对资源消耗和时序都没什么要求的时候使用。

3、BCD码转2进制码

了解了如何从2进制码转BCD码后,那么从BCD码转2进制码的方法就简单了–无非就是上述方法的逆过程嘛!

3.1、查找表

这个没什么好说的,和2进制码转BCD码的流程一模一样,只是ROM里面的存储内容不同罢了。

3.2、乘法(直接乘法与移位加法)

以12位BCD码255为例,若转换成2进制码,则只需要8bit。最高位的2可以看做百位,中间的5可以看做十位,最低位的5可以看做个位,所以转换后应该是2*100+5*10+5=255(10进制)=1111_1111(2进制)。只用乘法就可以实现BCD码转2进制码,由于乘法可以转换成移位和加法,所以消耗的资源也不会特别多。

下面是直接用乘法来实现20位BCD转16位BIN的RTL:

//乘法:20位BCD转16位BIN,加上时钟,49lut+24carry4
//slak=2.381ns,观察FMAX = 131Mhz,逻辑级数8
module test(input 				clk,input   	[19:0]	bcd,output	reg	[15:0]	bin
);wire	[3:0]	ten_thos; 	//10000
wire	[3:0]	thos;  		//1000
wire	[3:0]	huns;		//100
wire	[3:0]	tens;		//10
wire	[3:0]	ones;		//1wire  [19:0]	ten_thos_shift;   
wire  [19:0]	thos_shift;
wire  [19:0]	huns_shift;
wire  [19:0]	tens_shift; reg	[19:0]	bcd_r;always @(posedge clk)	//输入寄存一拍bcd_r <= bcd;  
always @(posedge clk)	//输出寄存一拍 bin <= ten_thos_shift + thos_shift+ huns_shift + tens_shift + ones;	assign ten_thos = bcd_r[19:16];
assign thos = bcd_r[15:12]; 
assign huns = bcd_r[11:8];
assign tens = bcd_r[7 :4];
assign ones = bcd_r[3 :0];   assign ten_thos_shift = ten_thos*10000;
assign thos_shift = thos*1000;
assign huns_shift = huns*100;
assign tens_shift = tens*10;endmodule

这样综合出来的电路一共消耗49个LUT+24个CARRY4,最大逻辑级数为8,Fmax约为131Mhz

在这里插入图片描述

用移位和加法来实现乘法:

//移位加法实现乘法,加上时钟,53 lut+ 13 carry4
//slack5.517ns,观察FMAX = 223Mhz,逻辑级数7
module test(input 				clk,input   	[19:0]	bcd,output	reg	[15:0]	bin
);wire	[3:0]	ten_thos; 	//10000
wire	[3:0]	thos;  		//1000
wire	[3:0]	huns;		//100
wire	[3:0]	tens;		//10
wire	[3:0]	ones;		//1wire  [19:0]	ten_thos_shift;   
wire  [19:0]	thos_shift;
wire  [19:0]	huns_shift;
wire  [19:0]	tens_shift; reg	[19:0]	bcd_r;always @(posedge clk)	//输入寄存一拍bcd_r <= bcd;  
always @(posedge clk)	//输出寄存一拍 bin <= ten_thos_shift + thos_shift+ huns_shift + tens_shift + ones;	assign ten_thos = bcd_r[19:16];
assign thos = bcd_r[15:12]; 
assign huns = bcd_r[11:8];
assign tens = bcd_r[7 :4];
assign ones = bcd_r[3 :0];   //移位后的万位=1*10000=1*(8192+1024+512+256+16)
assign ten_thos_shift = (ten_thos<<13) + (ten_thos<<10) + (ten_thos<<9) + (ten_thos<<8) + (ten_thos<<4);
//移位后的千位=1*1000=1*(1024-16-8)
assign thos_shift = (thos<<10) - (thos<<4) - (thos<<3);
//移位后的百位=1*100=1*(64+32+4)
assign huns_shift = (huns<<6) + (huns<<5) + (huns<<2);
//移位后的十位=1*10=1*(8+2)	
assign tens_shift = (tens<<3) + (tens<<1);endmodule

这样综合出来的电路一共消耗53个LUT+13个CARRY4,最大逻辑级数为7,Fmax为223Mhz,电路性能是比直接用乘法要好的。

在这里插入图片描述

3.3、移位减3法

移位加3法的逆过程自然就是移位减3发,但是注意判断条件–BCD码逢十进一,四位二进制逢十六进一,所以转二进制的条件即为16/2=8(右移),即需要判断每个BCD码的4位是否大于等于8,同时向右移位到二进制码中。

下面展示了BCD码0010_0100_0011到2进制码1111_0011的过程。

    BCD Input      Binary Output2    4    30010 0100 0011   00000000   初始化0001 0010 0001   10000000   向右移位0000 1001 0000   11000000   向右移位0000 0110 0000   11000000   中间4位值为9,所以要-30000 0011 0000   01100000   向右移位0000 0001 1000   00110000   向右移位0000 0001 0101   00110000   最右4位值为8,所以要-30000 0000 1010   10011000   向右移位0000 0000 0111   10011000   最右4位值为10,所以要-30000 0000 0011   11001100   向右移位0000 0000 0001   11100110   向右移位0000 0000 0000   11110011   向右移位

下面的RTL实现了12位BCD码转8位2进制码:

module test     					
( input		[11:0]	bcd,	output reg	[7 :0]	bin   
); 					integer i,j;	//循环参数
reg [11:0] temp;always @(*) begintemp[11:0] = bcd; 		//用输入替换for(i = 1; i <= 7; i = i+1)  begin                     	for(j = 0; j <= (7-i)/4; j = j+1) begin 		if (temp[i+4*j +: 4]>=8)begin	// if > 4temp[i+4*j +: 4] = temp[i+4*j +: 4] - 4'd3; //-3endend	end	bin= temp;	
endendmodule

在这里插入图片描述

这样综合出来的电路一共消耗17个LUT,最大逻辑级数为3,Fmax为323Mhz

在这里插入图片描述

下面是20位BCD转16位BIN的RTL:

module test     					
(input		[19:0]	bcd,	output reg	[15:0]	bin   
); 					integer i,j;	//循环参数
reg [19:0] temp;	always @(*) begintemp = bcd; 		//输入替换for(i = 1; i <= 15; i = i+1)  begin		//16-1                     	for(j = 0; j <= (15-i)/4; j = j+1) begin 		if (temp[i+4*j +: 4]>=8)begin	// if > 4temp[i+4*j +: 4] = temp[i+4*j +: 4] - 4'd3; //+3endend	end	bin= temp;	
endendmodule

3.4、资源及时序对比

将输入位数扩大到20位BCD转16位2进制数的转换,再分别使用3个方法构建电路,观察资源消耗情况:

直接乘移位+加法查找表移位-3法
49个LUT+24个CARRY453 lut+ 13 carry423220个LUT或者36个BRAM71个LUT
FMAX = 131Mhz,逻辑级数8FMAX = 223Mhz,逻辑级数7/FMAX = 147Mhz,逻辑级数7

移位减3法和直接乘法的资源消耗以及速度都差不多,这是因为乘法容易乘转换成移位+加法,这是FPGA很容易实现的形式,并不会像除法和取模那样消耗非常多的资源。用移位+加法来实现乘法的形式的资源消耗和时序性能是最好的,所以BCD转2进制数,建议用左移+加法来实现乘法。

4、总结

  • 位数不多的情况下,BCD码与2进制码的互转用查找表法都是最好的实现形式
  • 位数较多的情况下,2进制码转BCD码更推荐用移位加3法;BCD码转2进制码更推荐用移位+加法来实现乘法的形式
    ------------ | ---------------------- | ----------------------- |
    | 49个LUT+24个CARRY4 | 53 lut+ 13 carry4 | 23220个LUT或者36个BRAM | 71个LUT |
    | FMAX = 131Mhz,逻辑级数8 | FMAX = 223Mhz,逻辑级数7 | / | FMAX = 147Mhz,逻辑级数7 |

移位减3法和直接乘法的资源消耗以及速度都差不多,这是因为乘法容易乘转换成移位+加法,这是FPGA很容易实现的形式,并不会像除法和取模那样消耗非常多的资源。用移位+加法来实现乘法的形式的资源消耗和时序性能是最好的,所以BCD转2进制数,建议用左移+加法来实现乘法。

4、总结

  • 位数不多的情况下,BCD码与2进制码的互转用查找表法都是最好的实现形式
  • 位数较多的情况下,2进制码转BCD码更推荐用移位加3法;BCD码转2进制码更推荐用移位+加法来实现乘法的形式

  • 📣您有任何问题,都可以在评论区和我交流📃!
  • 📣本文由 孤独的单刀 原创,首发于CSDN平台🐵,博客主页:wuzhikai.blog.csdn.net
  • 📣您的支持是我持续创作的最大动力!如果本文对您有帮助,还请多多点赞👍、评论💬和收藏⭐

这篇关于Verilog实现2进制码与BCD码的互相转换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/681851

相关文章

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

java如何分布式锁实现和选型

《java如何分布式锁实现和选型》文章介绍了分布式锁的重要性以及在分布式系统中常见的问题和需求,它详细阐述了如何使用分布式锁来确保数据的一致性和系统的高可用性,文章还提供了基于数据库、Redis和Zo... 目录引言:分布式锁的重要性与分布式系统中的常见问题和需求分布式锁的重要性分布式系统中常见的问题和需求

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur