六个最有可能改变AI进程的发布!

2024-02-05 15:36

本文主要是介绍六个最有可能改变AI进程的发布!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本研究引入了Multi-Head高斯自适应注意力机制(GAAM)和高斯自适应变换器(GAT)来提高模型性能和上下文表示,特别是对于高度可变的数据。GAAM 将可学习的均值和方差纳入其注意力机制中,并在多头框架内构建。此设置允许 GAAM 共同表示任何概率分布,从而能够根据需要不断调整功能的重要性。

过去两周,新的人工智能更新不断涌现,异常疯狂。我们决定整理最近发布的六大框架和模型。

1、ActAnywhere:主题感知视频背景生成

图片

图片

Adobe Research和斯坦福大学推出了Act Anywhere,这是一种生成模型,解决了电影行业和视觉效果领域中将视频背景与前景主体运动对齐的挑战。该模型通过利用大规模视频传播模型来自动化典型的劳动密集型流程。 

它采用一系列前景主题分割和描述所需场景的条件帧作为输入,生成具有连贯前景-背景交互的逼真视频。 

在大规模人类场景交互视频数据集上进行训练后,数据表明Act Anywhere与基线相比表现良好,并证明了其处理各种非分布样本(包括非人类受试用者)的能力。

2、GALA

图片

图片

Meta一直试图在 Facebook、Instagram 和 WhatsApp 等不同平台上改进其头像。因此,Meta 的 Codec Avatars Lab 与首尔国立大学合作推出了GALA框架,该框架可将单层穿着的 3D 人体网格转换为全分层的 3D 资源,从而可以创建各种姿势的多样化服装人体头像。 

与将穿着衣服的人类视为单层几何体的现有方法不同,GALA 基于人类的发型、服装和配饰的组合性,增强了下游应用。由于遮挡,将网格分解为单独的层具有挑战性,即使分解成功,姿势和身体形状通常也与现实生活不一样。

为了克服这个问题,研究人员使用预先训练的二维扩散模型作为几何和外观的先验模型。该过程包括使用来自多视图 2D 分割的 3D 表面分割对输入网格进行分割,使用新的姿势引导得分蒸馏采样 (SDS) 损失合成姿势空间和规范空间中缺失的几何形状,并将相同的 SDS 损失应用于纹理完整的外观。这会在共享规范空间中产生多层 3D 资产,并针对姿势和人体形状进行标准化,从而有助于轻松组合新颖的身份和姿势。

3、Lumiere

图片

图片

为了解决在合成视频中创建逼真、多样化和连贯的运动的挑战,谷歌提出了Lumiere,一种文本转视频模型,由魏茨曼研究所、特拉维夫大学和以色列理工学院合作开发。训练涉及时空 U-Net 架构,它一次性生成整个视频持续时间,这与使用远程关键帧和时间超分辨率的现有模型不同。 

通过结合空间和时间处理并利用预先训练的文本到图像模型,该系统直接生成全帧率、低分辨率视频。它擅长文本到视频的任务,例如图像到视频和风格化生成。该模型展示了最先进的文本到视频结果,并且适用于图像到视频、视频修复和风格化生成等任务。 

然而,它目前无法处理具有多个镜头或场景转换的视频,这些领域还需要进一步研究。尽管存在一些限制,该项目的重点是使用户能够创造性地、灵活地生成视觉内容。

4、元提示(Meta-Prompting)

图片

在另一篇有趣的研究论文中,OpenAI和斯坦福大学联手提出了元提示,这是一种有效的脚手架技术,可以以与任务无关的方式增强语言模型 (LM) 的性能。这是通过将它们转变为可以管理多个独立查询的多功能导体来完成的。元提示与任务无关,无需详细说明即可简化用户交互。

GPT-4 的实验显示了元提示相对于传统方法的优越性,在 Game of 24、Checkmate-in-One、Python编程难题等任务中,元提示比标准提示提高了 17.1%,比动态提示提高了 17.3%,比多人提示(MP)提高了 15.2% 。

使用清晰的指令,元提示引导 LM 将复杂的任务分解为更小的子任务,然后由同一 LM 的专门实例处理,每个子任务都遵循定制的指令。LM 充当导体,确保顺畅的通信和输出的有效集成。它还利用批判性思维和验证流程来完善结果。这种协作提示允许单个 LM 充当协调者和专家小组,从而提高各种任务的性能。

5、自我奖励语言模型

图片

图片

Meta 和 NYU 最近的一篇研究论文中引入了自我奖励语言模型,该模型不依赖于源自人类偏好的奖励模型,这种模型可能会受到人类表现的限制,并且在训练过程中无法改进。这些模型可以通过评估和训练其输出来调整自身,并使用语言模型本身通过法学硕士作为法官的提示来产生奖励。

该方法涉及迭代训练,其中模型使用法学硕士作为法官的提示将奖励分配给自己的输出,从而生成基于偏好的指令数据。结果表明,这种训练提高了模型遵循指令的能力,并改进了其跨迭代的奖励建模。 

6、高斯自适应注意力(GAAM)is all your need!

图片

图片

本研究引入了Multi-Head高斯自适应注意力机制(GAAM)和高斯自适应变换器(GAT)来提高模型性能和上下文表示,特别是对于高度可变的数据。GAAM 将可学习的均值和方差纳入其注意力机制中,并在多头框架内构建。此设置允许 GAAM 共同表示任何概率分布,从而能够根据需要不断调整功能的重要性。

该研究还引入了重要性因子(IF)以增强模型的可解释性。GAAM(一种新的概率注意力框架)和 GAT 的提出是为了促进跨语音、文本和视觉模式的信息编译。它通过识别特征空间中的关键元素,在模型性能方面超越了最先进的注意力技术。 

该论文由詹姆斯·西尔伯拉德·布朗人工智能中心、卡内基梅隆大学、斯坦福大学和亚马逊发表。 

技术前沿拓展

前端开发,你的认知不能仅局限于技术内,需要发散思维了解技术圈的前沿知识。细心的人会发现,开发内部工具的过程中,大量的页面、场景、组件等在不断重复,这种重复造轮子的工作,浪费工程师的大量时间。

介绍一款程序员都应该知道的软件JNPF快速开发平台,很多人都尝试用过它,它是功能的集大成者,任何信息化系统都可以基于它开发出来。

这是一个基于 Java Boot/.Net Core 构建的简单、跨平台快速开发框架。前后端封装了上千个常用类,方便扩展;集成了代码生成器,支持前后端业务代码生成,实现快速开发,提升工作效率;框架集成了表单、报表、图表、大屏等各种常用的 Demo 方便直接使用;后端框架支持 Vue2、Vue3。如果你有闲暇时间,可以做个知识拓展。

这篇关于六个最有可能改变AI进程的发布!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/681367

相关文章

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

定价129元!支持双频 Wi-Fi 5的华为AX1路由器发布

《定价129元!支持双频Wi-Fi5的华为AX1路由器发布》华为上周推出了其最新的入门级Wi-Fi5路由器——华为路由AX1,建议零售价129元,这款路由器配置如何?详细请看下文介... 华为 Wi-Fi 5 路由 AX1 已正式开售,新品支持双频 1200 兆、配有四个千兆网口、提供可视化智能诊断功能,建

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

SpringBoot整合DeepSeek实现AI对话功能

《SpringBoot整合DeepSeek实现AI对话功能》本文介绍了如何在SpringBoot项目中整合DeepSeekAPI和本地私有化部署DeepSeekR1模型,通过SpringAI框架简化了... 目录Spring AI版本依赖整合DeepSeek API key整合本地化部署的DeepSeek

Linux环境变量&&进程地址空间详解

《Linux环境变量&&进程地址空间详解》本文介绍了Linux环境变量、命令行参数、进程地址空间以及Linux内核进程调度队列的相关知识,环境变量是系统运行环境的参数,命令行参数用于传递给程序的参数,... 目录一、初步认识环境变量1.1常见的环境变量1.2环境变量的基本概念二、命令行参数2.1通过命令编程

Linux之进程状态&&进程优先级详解

《Linux之进程状态&&进程优先级详解》文章介绍了操作系统中进程的状态,包括运行状态、阻塞状态和挂起状态,并详细解释了Linux下进程的具体状态及其管理,此外,文章还讨论了进程的优先级、查看和修改进... 目录一、操作系统的进程状态1.1运行状态1.2阻塞状态1.3挂起二、linux下具体的状态三、进程的

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20