六个最有可能改变AI进程的发布!

2024-02-05 15:36

本文主要是介绍六个最有可能改变AI进程的发布!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本研究引入了Multi-Head高斯自适应注意力机制(GAAM)和高斯自适应变换器(GAT)来提高模型性能和上下文表示,特别是对于高度可变的数据。GAAM 将可学习的均值和方差纳入其注意力机制中,并在多头框架内构建。此设置允许 GAAM 共同表示任何概率分布,从而能够根据需要不断调整功能的重要性。

过去两周,新的人工智能更新不断涌现,异常疯狂。我们决定整理最近发布的六大框架和模型。

1、ActAnywhere:主题感知视频背景生成

图片

图片

Adobe Research和斯坦福大学推出了Act Anywhere,这是一种生成模型,解决了电影行业和视觉效果领域中将视频背景与前景主体运动对齐的挑战。该模型通过利用大规模视频传播模型来自动化典型的劳动密集型流程。 

它采用一系列前景主题分割和描述所需场景的条件帧作为输入,生成具有连贯前景-背景交互的逼真视频。 

在大规模人类场景交互视频数据集上进行训练后,数据表明Act Anywhere与基线相比表现良好,并证明了其处理各种非分布样本(包括非人类受试用者)的能力。

2、GALA

图片

图片

Meta一直试图在 Facebook、Instagram 和 WhatsApp 等不同平台上改进其头像。因此,Meta 的 Codec Avatars Lab 与首尔国立大学合作推出了GALA框架,该框架可将单层穿着的 3D 人体网格转换为全分层的 3D 资源,从而可以创建各种姿势的多样化服装人体头像。 

与将穿着衣服的人类视为单层几何体的现有方法不同,GALA 基于人类的发型、服装和配饰的组合性,增强了下游应用。由于遮挡,将网格分解为单独的层具有挑战性,即使分解成功,姿势和身体形状通常也与现实生活不一样。

为了克服这个问题,研究人员使用预先训练的二维扩散模型作为几何和外观的先验模型。该过程包括使用来自多视图 2D 分割的 3D 表面分割对输入网格进行分割,使用新的姿势引导得分蒸馏采样 (SDS) 损失合成姿势空间和规范空间中缺失的几何形状,并将相同的 SDS 损失应用于纹理完整的外观。这会在共享规范空间中产生多层 3D 资产,并针对姿势和人体形状进行标准化,从而有助于轻松组合新颖的身份和姿势。

3、Lumiere

图片

图片

为了解决在合成视频中创建逼真、多样化和连贯的运动的挑战,谷歌提出了Lumiere,一种文本转视频模型,由魏茨曼研究所、特拉维夫大学和以色列理工学院合作开发。训练涉及时空 U-Net 架构,它一次性生成整个视频持续时间,这与使用远程关键帧和时间超分辨率的现有模型不同。 

通过结合空间和时间处理并利用预先训练的文本到图像模型,该系统直接生成全帧率、低分辨率视频。它擅长文本到视频的任务,例如图像到视频和风格化生成。该模型展示了最先进的文本到视频结果,并且适用于图像到视频、视频修复和风格化生成等任务。 

然而,它目前无法处理具有多个镜头或场景转换的视频,这些领域还需要进一步研究。尽管存在一些限制,该项目的重点是使用户能够创造性地、灵活地生成视觉内容。

4、元提示(Meta-Prompting)

图片

在另一篇有趣的研究论文中,OpenAI和斯坦福大学联手提出了元提示,这是一种有效的脚手架技术,可以以与任务无关的方式增强语言模型 (LM) 的性能。这是通过将它们转变为可以管理多个独立查询的多功能导体来完成的。元提示与任务无关,无需详细说明即可简化用户交互。

GPT-4 的实验显示了元提示相对于传统方法的优越性,在 Game of 24、Checkmate-in-One、Python编程难题等任务中,元提示比标准提示提高了 17.1%,比动态提示提高了 17.3%,比多人提示(MP)提高了 15.2% 。

使用清晰的指令,元提示引导 LM 将复杂的任务分解为更小的子任务,然后由同一 LM 的专门实例处理,每个子任务都遵循定制的指令。LM 充当导体,确保顺畅的通信和输出的有效集成。它还利用批判性思维和验证流程来完善结果。这种协作提示允许单个 LM 充当协调者和专家小组,从而提高各种任务的性能。

5、自我奖励语言模型

图片

图片

Meta 和 NYU 最近的一篇研究论文中引入了自我奖励语言模型,该模型不依赖于源自人类偏好的奖励模型,这种模型可能会受到人类表现的限制,并且在训练过程中无法改进。这些模型可以通过评估和训练其输出来调整自身,并使用语言模型本身通过法学硕士作为法官的提示来产生奖励。

该方法涉及迭代训练,其中模型使用法学硕士作为法官的提示将奖励分配给自己的输出,从而生成基于偏好的指令数据。结果表明,这种训练提高了模型遵循指令的能力,并改进了其跨迭代的奖励建模。 

6、高斯自适应注意力(GAAM)is all your need!

图片

图片

本研究引入了Multi-Head高斯自适应注意力机制(GAAM)和高斯自适应变换器(GAT)来提高模型性能和上下文表示,特别是对于高度可变的数据。GAAM 将可学习的均值和方差纳入其注意力机制中,并在多头框架内构建。此设置允许 GAAM 共同表示任何概率分布,从而能够根据需要不断调整功能的重要性。

该研究还引入了重要性因子(IF)以增强模型的可解释性。GAAM(一种新的概率注意力框架)和 GAT 的提出是为了促进跨语音、文本和视觉模式的信息编译。它通过识别特征空间中的关键元素,在模型性能方面超越了最先进的注意力技术。 

该论文由詹姆斯·西尔伯拉德·布朗人工智能中心、卡内基梅隆大学、斯坦福大学和亚马逊发表。 

技术前沿拓展

前端开发,你的认知不能仅局限于技术内,需要发散思维了解技术圈的前沿知识。细心的人会发现,开发内部工具的过程中,大量的页面、场景、组件等在不断重复,这种重复造轮子的工作,浪费工程师的大量时间。

介绍一款程序员都应该知道的软件JNPF快速开发平台,很多人都尝试用过它,它是功能的集大成者,任何信息化系统都可以基于它开发出来。

这是一个基于 Java Boot/.Net Core 构建的简单、跨平台快速开发框架。前后端封装了上千个常用类,方便扩展;集成了代码生成器,支持前后端业务代码生成,实现快速开发,提升工作效率;框架集成了表单、报表、图表、大屏等各种常用的 Demo 方便直接使用;后端框架支持 Vue2、Vue3。如果你有闲暇时间,可以做个知识拓展。

这篇关于六个最有可能改变AI进程的发布!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/681367

相关文章

微信公众号脚本-获取热搜自动新建草稿并发布文章

《微信公众号脚本-获取热搜自动新建草稿并发布文章》本来想写一个自动化发布微信公众号的小绿书的脚本,但是微信公众号官网没有小绿书的接口,那就写一个获取热搜微信普通文章的脚本吧,:本文主要介绍微信公众... 目录介绍思路前期准备环境要求获取接口token获取热搜获取热搜数据下载热搜图片给图片加上标题文字上传图片

SpringKafka消息发布之KafkaTemplate与事务支持功能

《SpringKafka消息发布之KafkaTemplate与事务支持功能》通过本文介绍的基本用法、序列化选项、事务支持、错误处理和性能优化技术,开发者可以构建高效可靠的Kafka消息发布系统,事务支... 目录引言一、KafkaTemplate基础二、消息序列化三、事务支持机制四、错误处理与重试五、性能优

新特性抢先看! Ubuntu 25.04 Beta 发布:Linux 6.14 内核

《新特性抢先看!Ubuntu25.04Beta发布:Linux6.14内核》Canonical公司近日发布了Ubuntu25.04Beta版,这一版本被赋予了一个活泼的代号——“Plu... Canonical 昨日(3 月 27 日)放出了 Beta 版 Ubuntu 25.04 系统镜像,代号“Pluc

浅谈mysql的sql_mode可能会限制你的查询

《浅谈mysql的sql_mode可能会限制你的查询》本文主要介绍了浅谈mysql的sql_mode可能会限制你的查询,这个问题主要说明的是,我们写的sql查询语句违背了聚合函数groupby的规则... 目录场景:问题描述原因分析:解决方案:第一种:修改后,只有当前生效,若是mysql服务重启,就会失效;

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Linux中的进程间通信之匿名管道解读

《Linux中的进程间通信之匿名管道解读》:本文主要介绍Linux中的进程间通信之匿名管道解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、基本概念二、管道1、温故知新2、实现方式3、匿名管道(一)管道中的四种情况(二)管道的特性总结一、基本概念我们知道多

Linux进程终止的N种方式详解

《Linux进程终止的N种方式详解》进程终止是操作系统中,进程的一个重要阶段,他标志着进程生命周期的结束,下面小编为大家整理了一些常见的Linux进程终止方式,大家可以根据需求选择... 目录前言一、进程终止的概念二、进程终止的场景三、进程终止的实现3.1 程序退出码3.2 运行完毕结果正常3.3 运行完毕

Spring AI ectorStore的使用流程

《SpringAIectorStore的使用流程》SpringAI中的VectorStore是一种用于存储和检索高维向量数据的数据库或存储解决方案,它在AI应用中发挥着至关重要的作用,本文给大家介... 目录一、VectorStore的基本概念二、VectorStore的核心接口三、VectorStore的

Windows命令之tasklist命令用法详解(Windows查看进程)

《Windows命令之tasklist命令用法详解(Windows查看进程)》tasklist命令显示本地计算机或远程计算机上当前正在运行的进程列表,命令结合筛选器一起使用,可以按照我们的需求进行过滤... 目录命令帮助1、基本使用2、执行原理2.1、tasklist命令无法使用3、筛选器3.1、根据PID

Nginx实现前端灰度发布

《Nginx实现前端灰度发布》灰度发布是一种重要的策略,它允许我们在不影响所有用户的情况下,逐步推出新功能或更新,通过灰度发布,我们可以测试新版本的稳定性和性能,下面就来介绍一下前端灰度发布的使用,感... 目录前言一、基于权重的流量分配二、基于 Cookie 的分流三、基于请求头的分流四、基于请求参数的分