代码随想录算法训练营第二五天 | 回溯 组合

2024-02-05 14:20

本文主要是介绍代码随想录算法训练营第二五天 | 回溯 组合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 组合总和
  • 电话号码的字母组合

LeetCode 216.组合总和III
LeetCode 17.电话号码的字母组合

组合总和

找出所有相加之和为 n 的 k 个数的组合,且满足下列条件:

只使用数字1到9

每个数字 最多使用一次

返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次,组合可以以任何顺序返回。

class Solution {List<List<Integer>> result = new ArrayList<>();List<Integer> list = new ArrayList<>();public List<List<Integer>> combinationSum3(int k, int n) {backtracking(k, n, 1);return result;}private void backtracking(int k, int n, int startIndex) {if (n < 0) return;   // 剪枝if (list.size() == k) {if (n == 0) {result.add(new ArrayList<>(list)); // 容易忘记 new 一个}return;  // 如果path.size() == k 但sum != targetSum 直接返回}for (int i = startIndex; i <= 9 - (k - list.size()) + 1; i++) {  // 剪枝list.add(i);     backtracking(k, n - i, i + 1);  list.removeLast();  // 注意:处理过程 和 回溯过程是一一对应的,处理有加,回溯就要有减!}}
}
		for(int i = startIndex; i <= 9; i++) {path.add(i);sum += i;build(k, n, i + 1, sum);sum -= i;path.removeLast();}

电话号码的字母组合

给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。

给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。

class Solution {Map<Integer, String> hm = new HashMap<>();List<String> result = new ArrayList<>();StringBuilder sb = new StringBuilder();public List<String> letterCombinations(String digits) {hm.put(2, "abc");hm.put(3, "def");hm.put(4, "ghi");hm.put(5, "jkl");hm.put(6, "mno");hm.put(7, "pqrs");hm.put(8, "tuv");hm.put(9, "wxyz");if (digits == null || digits.length() == 0) return result;backtracking(digits, 0);return result;}private void backtracking(String digits, int index) {// index 是遍历digits的if (index == digits.length()) {result.add(sb.toString());return;}String str = hm.get(digits.charAt(index) - '0'); // 当前对应的字符串for(int i = 0; i < str.length(); i++) {sb.append(str.charAt(i));backtracking(digits, index + 1);sb.deleteCharAt(sb.length() - 1);     // 注意 deleteCharAt()方法                     }}
}

这篇关于代码随想录算法训练营第二五天 | 回溯 组合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/681190

相关文章

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu4869(逆元+求组合数)

//输入n,m,n表示翻牌的次数,m表示牌的数目,求经过n次操作后共有几种状态#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#includ

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n