如何在colab配置openmmlab环境(目前网上资料较少,避免踩坑)

2024-02-05 08:32

本文主要是介绍如何在colab配置openmmlab环境(目前网上资料较少,避免踩坑),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.colab简介

colab是谷歌云服务器,作为一款免费的云服务器谷歌可以说是非常良心,可以享受高配置的gpu运行环境,对于我自己而言我自己电脑只能用cpu跑深度学习的代码可以说时间和效率都非常低。接下来根据自己两天的踩坑经验给大家发一款openmmlab在colab的配置教程。但是每次打开记笔记刷新以后都要重新配置,大约十分钟!

2.注意torch和gpu的版本


!sudo lsb_release -a # 查看系统版本
!nvcc -V #或者!nvidia-smi # 查看cuda版本
!gcc --version # 查看GCC版本
``——————————————————手动分割线————————————————
#输出
No LSB modules are available.
Distributor ID:	Ubuntu
Description:	Ubuntu 18.04.5 LTS
Release:	18.04
Codename:	bionic
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Wed_Jul_22_19:09:09_PDT_2020
Cuda compilation tools, release 11.0, V11.0.221
Build cuda_11.0_bu.TC445_37.28845127_0
gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
Copyright (C) 2017 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.  There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

1.观察可知Ubuntu18.04,cuda11.0,GCC7.5.0

import torch, torchvision
print(torch.__version__, torch.cuda.is_available())

2.随着时间的推移大家的版本可能都不太一样,我这里是1.9.0 cuda版本是10.2,笔记本设置选择gpu,否则gpu可能是false。
3.可以看到硬件的配置和cuda的版本是不一致的这个时候我们要卸载原来的torch环境,安装指定版本的torch

#卸载原有的pytorch
!pip uninstall torch torchvision -y
#线上安装新的pytorch
!pip install -U torch==1.8.1+cu111 torchvision==0.9.1+cu111 -f https://download.pytorch.org/whl/torch_stable.html

4.把Google云盘挂载到colab上

# 把Google云盘挂载到colab上
from google.colab import drive
drive.mount('/content/gdrive',force_remount=True) #这一步会让你点击链接获取验证码
#目录"/content/gdrive/MyDrive/"就指向你的谷歌云盘了

5.成功挂载以后左侧文件应该是这样的,当然这里你们还没有mmdet等文件夹。
在这里插入图片描述
6.挂载成功以后进入MyDrive文件夹

%cd /content/gdrive/MyDrive/ 

7.进行mmoepnlab的配置

#安装mmdetection
#安装mmdetection
!rm -rf mmdetection #如果有mmdetection文件夹就删掉,下面新建
!git clone https://github.com/open-mmlab/mmdetection.git
%cd mmdetection!pip install mmcv-full
!pip install -e .
# install Pillow 7.0.0 back in order to avoid bug in colab
!pip install Pillow==7.0.0
#静候安装完成,预计10min
import os
os.kill(os.getpid(), 9)
%cd /content/gdrive/MyDrive/ 
#上一步cd主要是为了把mmseg放在MyDrive里面。
!rm -rf mmsegmentation 
!git clone https://github.com/open-mmlab/mmsegmentation.git
%cd mmsegmentation

8.检查是否安装成功

import torch, torchvision
print(torch.__version__, torch.cuda.is_available())# Check MMDetection installation
import mmdet
print(mmdet.__version__)# Check mmcv installation
from mmcv.ops import get_compiling_cuda_version, get_compiler_version
print(get_compiling_cuda_version())
print(get_compiler_version())

如果是下面这样就是安装成功的。
在这里插入图片描述

3.示例程序检测(学会配置config)

config的配置大家需要下载指定的模型保存到checkpoints文件夹中,大家可以根据路径的不同进行调整
** 示例的model下载链接
在这里插入图片描述
大家下载模型成功以后安装到云盘根据路径进行config配置就可以了,记得cd到MyDrive

from mmseg.apis import init_segmentor, inference_segmentor, show_result_pyplot
from mmseg.core.evaluation import get_palette
import mmcv
from google.colab.patches import cv2_imshow
from google.colab.patches import cv2
from matplotlib import pyplot as pltconfig_file = 'mmsegmentation/configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py'
checkpoint_file = 'checkpoints/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth'# 从一个 config 配置文件和 checkpoint 文件里创建分割模型
model = init_segmentor(config_file, checkpoint_file, device='cuda:0')# 测试一张样例图片并得到结果
img = 'test.jpg'  # 或者 img = mmcv.imread(img), 这将只加载图像一次.
result = inference_segmentor(model, img)
# 在新的窗口里可视化结果
show_result_pyplot(model, img, result, get_palette('cityscapes'))

在这里插入图片描述

这篇关于如何在colab配置openmmlab环境(目前网上资料较少,避免踩坑)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/680320

相关文章

Zookeeper安装和配置说明

一、Zookeeper的搭建方式 Zookeeper安装方式有三种,单机模式和集群模式以及伪集群模式。 ■ 单机模式:Zookeeper只运行在一台服务器上,适合测试环境; ■ 伪集群模式:就是在一台物理机上运行多个Zookeeper 实例; ■ 集群模式:Zookeeper运行于一个集群上,适合生产环境,这个计算机集群被称为一个“集合体”(ensemble) Zookeeper通过复制来实现

CentOS7安装配置mysql5.7 tar免安装版

一、CentOS7.4系统自带mariadb # 查看系统自带的Mariadb[root@localhost~]# rpm -qa|grep mariadbmariadb-libs-5.5.44-2.el7.centos.x86_64# 卸载系统自带的Mariadb[root@localhost ~]# rpm -e --nodeps mariadb-libs-5.5.44-2.el7

hadoop开启回收站配置

开启回收站功能,可以将删除的文件在不超时的情况下,恢复原数据,起到防止误删除、备份等作用。 开启回收站功能参数说明 (1)默认值fs.trash.interval = 0,0表示禁用回收站;其他值表示设置文件的存活时间。 (2)默认值fs.trash.checkpoint.interval = 0,检查回收站的间隔时间。如果该值为0,则该值设置和fs.trash.interval的参数值相等。

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

wolfSSL参数设置或配置项解释

1. wolfCrypt Only 解释:wolfCrypt是一个开源的、轻量级的、可移植的加密库,支持多种加密算法和协议。选择“wolfCrypt Only”意味着系统或应用将仅使用wolfCrypt库进行加密操作,而不依赖其他加密库。 2. DTLS Support 解释:DTLS(Datagram Transport Layer Security)是一种基于UDP的安全协议,提供类似于

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

安装nodejs环境

本文介绍了如何通过nvm(NodeVersionManager)安装和管理Node.js及npm的不同版本,包括下载安装脚本、检查版本并安装特定版本的方法。 1、安装nvm curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.0/install.sh | bash 2、查看nvm版本 nvm --version 3、安装

【IPV6从入门到起飞】5-1 IPV6+Home Assistant(搭建基本环境)

【IPV6从入门到起飞】5-1 IPV6+Home Assistant #搭建基本环境 1 背景2 docker下载 hass3 创建容器4 浏览器访问 hass5 手机APP远程访问hass6 更多玩法 1 背景 既然电脑可以IPV6入站,手机流量可以访问IPV6网络的服务,为什么不在电脑搭建Home Assistant(hass),来控制你的设备呢?@智能家居 @万物互联

高并发环境中保持幂等性

在高并发环境中保持幂等性是一项重要的挑战。幂等性指的是无论操作执行多少次,其效果都是相同的。确保操作的幂等性可以避免重复执行带来的副作用。以下是一些保持幂等性的常用方法: 唯一标识符: 请求唯一标识:在每次请求中引入唯一标识符(如 UUID 或者生成的唯一 ID),在处理请求时,系统可以检查这个标识符是否已经处理过,如果是,则忽略重复请求。幂等键(Idempotency Key):客户端在每次