(POJ 1015) Jury Compromise 经典dp问题 (n选m)

2024-02-05 02:38

本文主要是介绍(POJ 1015) Jury Compromise 经典dp问题 (n选m),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载请注明出处:優YoU http://blog.csdn.net/lyy289065406/article/details/6671105

大致题意:
在遥远的国家佛罗布尼亚,嫌犯是否有罪,须由陪审团决定。陪审团是由法官从公众中挑选的。先随机挑选n 个人作为陪审团的候选人,然后再从这n 个人中选m 人组成陪审团。选m 人的办法是:控方和辩方会根据对候选人的喜欢程度,给所有候选人打分,分值从0 到20。为了公平起见,法官选出陪审团的原则是:选出的m 个人,必须满足辩方总分D和控方总分P的差的绝对值|D-P|最小。如果有多种选择方案的 |D-P| 值相同,那么选辩控双方总分之和D+P最大的方案即可。
输出:
选取符合条件的最优m个候选人后,要求输出这m个人的辩方总值D和控方总值P,并升序输出他们的编号。

解题思路:
动态规划。

  为叙述问题方便,现将任一选择方案中,辩方总分和控方总分之差简称为“辩控差”,辩方总分和控方总分之和称为“辩控和”。第i 个候选人的辩方总分和控方总分之差记为V(i),辩方总分和控方总分之和记为S(i)。

现用dp(j, k)表示,取j 个候选人,使其辩控差为k 的所有方案中,辩控和最大的那个方案(该方案称为“方案dp(j, k)”)的辩控和。
并且,我们还规定,如果没法选j 个人,使其辩控差为k,那么dp(j, k)的值就为-1,也称方案dp(j, k)不可行。本题是要求选出m 个人,那么,如果对k 的所有可能的取值,求出了所有的dp(m, k) (-20×m≤ k ≤ 20×m),那么陪审团方案自然就很容易找到了。
问题的关键是建立递推关系。需要从哪些已知条件出发,才能求出dp(j, k)呢?显然,方案dp(j, k)是由某个可行的方案dp(j-1, x)( -20×m ≤ x ≤ 20×m)演化而来的。
可行方案dp(j-1, x)能演化成方案dp(j, k)的必要条件是:存在某个候选人i,i 在方案dp(j-1, x)中没有被选上,且x+V(i) = k。在所有满足该必要条件的dp(j-1, x)中,选出 dp(j-1, x) + S(i) 的值最大的那个,那么方案dp(j-1, x)再加上候选人i,就演变成了方案 dp(j, k)。
这中间需要将一个方案都选了哪些人都记录下来。不妨将方案dp(j, k)中最后选的那个候选人的编号,记在二维数组的元素path[j][k]中。那么方案dp(j, k)的倒数第二个人选的编号,就是path[j-1][k-V[path[j][k]]]。假定最后算出了解方案的辩控差是k,那么从path[m][k]出发,就能顺藤摸瓜一步步回溯求出所有被选中的候选人。
初始条件,只能确定dp(0, 0) = 0,其他均为-1。由此出发,一步步自底向上递推,就能求出所有的可行方案dp(m, k)( -20×m ≤ k ≤ 20×m)。实际解题的时候,会用一个二维数组dp 来存放dp(j, k)的值。而且,由于题目中辩控差的值k 可以为负数,而程序中数租下标不能为负数,所以,在程序中不妨将辩控差的值都加上修正值fix=400,以免下标为负数导致出错。
为什么fix=400?这是很显然的,m上限为20人,当20人的d均为0,p均为20时,会出现辨控差为-400。修正后回避下标负数问题,区间整体平移,从[-400,400]映射到[0,800]。
此时初始条件修正为dp(0, fix) = 0,其他均为-1。
DP后,从第m行的dp(m, fix)开始往两边搜索最小|D-P| 即可,第一个不为dp[m][k]!=-1的位置k就是最小|D-P|的所在。
最后就是求m个人的D和P,由于D+P = dp(m, |D-P| ) ,|D-P|已知。
那么D= (D+P + |D-P| )/2 , P=(D+P-|D-P| ) / 2
计算D和P时注意修正值fix

AC代码:

//Memory Time 
//388K   16MS #include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;int n;  //候选人数
int m;  //当选人数
int dp[21][801];   //dp[j][k]:取j个候选人,使其辩控差为k的所有方案中,辩控和最大的方案的辩控和
int path[21][801];  //记录所选定的候选人的编号/*回溯,确认dp[j][k]方案是否曾选择过候选人i*/
bool select(int j,int k,int i,int* v)
{while(j>0 && path[j][k]!=i){k-=v[ path[j][k] ];j--;}return j?false:true;
}int main(void)
{int time=1;while(cin>>n>>m && n){/*Initial*/int j,k,i;int* p=new int[n+1];  //每个人的控方值int* d=new int[n+1];  //每个人的辩方值int* s=new int[n+1];  //每个人的辨控和int* v=new int[n+1];  //每个人的辨控差memset(dp,-1,sizeof(dp));memset(path,0,sizeof(path));/*Input*/for(i=1;i<=n;i++){cin>>p[i]>>d[i];s[i]=p[i]+d[i];v[i]=p[i]-d[i];}int fix=m*20;  //总修正值,修正极限为从[-400,400]映射到[0,800]/*DP*/dp[0][fix]=0;   //由于修正了数值,因此dp[0][fix]才是真正的dp[0][0]for(j=1;j<=m;j++)for(k=0;k<=2*fix;k++){if(dp[j-1][k]>=0)   //区间已平移,dp[0][fix]才是真正的dp[0][0]{for(i=1;i<=n;i++)if(dp[j][ k+v[i] ] < dp[j-1][k]+s[i]){if(select(j-1,k,i,v)){dp[j][ k+v[i] ] = dp[j-1][k]+s[i];path[j][ k+v[i] ] = i;}}}}/*Output*/for(k=0;k<=fix;k++)if(dp[m][fix-k]>=0 || dp[m][fix+k]>=0)    //从中间向两边搜索最小辨控差的位置kbreak;int div=dp[m][fix-k] > dp[m][fix+k] ? (fix-k):(fix+k);  //最小辨控差cout<<"Jury #"<<time++<<endl;cout<<"Best jury has value ";//辩方总值 = (辨控和+辨控差+修正值)/2cout<<(dp[m][div]+div-fix)/2<<" for prosecution and value ";//控方总值 = (辨控和-辨控差+修正值)/2cout<<(dp[m][div]-div+fix)/2<<" for defence:"<<endl;int* id=new int[m];for(i=0,j=m,k=div;i<m;i++){id[i]=path[j][k];k-=v[ id[i] ];j--;}sort(id,id+m);   //升序输出候选人编号for(i=0;i<m;i++)cout<<' '<<id[i];cout<<endl<<endl;/*Relax*/delete p;delete d;delete s;delete v;delete id;}return 0;
}

这篇关于(POJ 1015) Jury Compromise 经典dp问题 (n选m)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/679526

相关文章

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2