EmoLLM-心理健康大模型

2024-02-04 22:12
文章标签 模型 心理健康 emollm

本文主要是介绍EmoLLM-心理健康大模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 宣传一下自己最近参与的开源
    • https://github.com/aJupyter/EmoLLM

EmoLLM-心理健康大模型

EmoLLM


探索本项目的文档 »

查看Demo · 报告Bug · 提出新特性

EmoLLM 是一个能够支持 理解用户-支持用户-帮助用户 心理健康辅导链路的心理健康大模型,由 InternLM2 指令微调而来,欢迎大家star~⭐⭐


心理健康大模型(Mental Health Grand Model)是一个综合性的概念,它旨在全面理解和促进个体、群体乃至整个社会的心理健康状态。这个模型通常包含以下几个关键组成部分:

  • 认知因素:涉及个体的思维模式、信念系统、认知偏差以及解决问题的能力。认知因素对心理健康有重要影响,因为它们影响个体如何解释和应对生活中的事件。
  • 情感因素:包括情绪调节、情感表达和情感体验。情感健康是心理健康的重要组成部分,涉及个体如何管理和表达自己的情感,以及如何从负面情绪中恢复。
  • 行为因素:涉及个体的行为模式、习惯和应对策略。这包括应对压力的技巧、社交技能以及自我效能感,即个体对自己能力的信心。
  • 社会环境:包括家庭、工作、社区和文化背景等外部因素,这些因素对个体的心理健康有着直接和间接的影响。
  • 生理健康:身体健康与心理健康紧密相关。良好的身体健康可以促进心理健康,反之亦然。
  • 心理韧性:指个体在面对逆境时的恢复力和适应能力。心理韧性强的人更能够从挑战中恢复,并从中学习和成长。
  • 预防和干预措施:心理健康大模型还包括预防心理问题和促进心理健康的策略,如心理教育、心理咨询、心理治疗和社会支持系统。
  • 评估和诊断工具:为了有效促进心理健康,需要有科学的工具来评估个体的心理状态,以及诊断可能存在的心理问题。

最近更新

  • 2024.1.27 完善数据构建文档、微调指南、部署指南、Readme等相关文档 👏
  • 2024.1.25 完成EmoLLM第一版并部署上线 https://openxlab.org.cn/apps/detail/jujimeizuo/EmoLLM 😀

目录

  • EmoLLM-心理健康大模型
    • 开发前的配置要求
    • 使用指南
      • 文件目录说明
      • 数据构建
      • 微调指南
      • 部署指南
      • 使用到的框架
      • 如何参与本项目
      • 版本控制
      • 作者(排名不分先后)
      • 版权说明
      • 特别鸣谢
    • 🌟 Contributors
开发前的配置要求
  • 硬件:A100 40G
使用指南
  1. Clone the repo
git clone https://github.com/aJupyter/EmoLLM.git
  1. 依次阅读或者选择感兴趣的部分阅读:
    • 文件目录说明
    • 数据构建
    • 微调指南
    • 部署指南
    • 查看更多详情
更多详情

文件目录说明

├─assets:图像资源
├─datasets:数据集
├─demo:demo脚本
├─generate_data:生成数据指南
│  └─xinghuo
├─scripts:一些可用工具
└─xtuner_config:微调指南└─images

数据构建

请阅读数据构建指南查阅

本次微调用到的数据集见datasets

微调指南

详见微调指南

部署指南

详见部署指南

使用到的框架

  • Xtuner
  • Transformers
  • Pytorch
如何参与本项目

贡献使开源社区成为一个学习、激励和创造的绝佳场所。你所作的任何贡献都是非常感谢的。

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

版本控制

该项目使用Git进行版本管理。您可以在repository参看当前可用版本。

作者(排名不分先后)

aJupyter@datawhale成员、南开大学在读硕士

jujimeizuo@江南大学硕士

Smiling&Weeping@哈尔滨工业大学(威海)在读本科生

Farewell@

版权说明

该项目签署了MIT 授权许可,详情请参阅 LICENSE

特别鸣谢

  • Sanbu
  • 上海人工智能实验室
  • 闻星大佬(小助手)

这篇关于EmoLLM-心理健康大模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/678944

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU