pytorch_car_caring 排坑记录

2024-02-04 18:40
文章标签 记录 pytorch car 排坑 caring

本文主要是介绍pytorch_car_caring 排坑记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

pytorch_car_caring 排坑记录

  • 任务
  • 踩坑回顾
    • 简单环境问题
    • 代码版本问题
      • 症状描述
      • 解决方法
    • cuda问题(异步问题)
      • 症状描述
      • 解决方法

任务

因为之前那个MPC代码跑出来的效果不理想,看了一天代码,大概看明白了,但要做改进还要有不少工作(对我来说),特别是如何对效果进行评估。正好我还要用到RL做这个任务的代码,就在github上看了下,发现有几个,打算都跑跑,看谁效果好,代码又干净,就用谁的。本菜鸡目前只会这么硬缝。。。
参考代码这个项目是用PPO算法做的。

踩坑回顾

简单环境问题

照旧起手安装个3.10的conda环境,然后按照readme安装所需包(我直接pip3安装最新版),中间提示少了什么包我再安什么包。
这次我装gym,直接就pip3 install gym[all]了,省事儿。

代码版本问题

症状描述

根据readme指示,运行:

python test.py --render

报错:

gym.error.DeprecatedEnv: Environment version v0 for `CarRacing` is deprecated. Please use `CarRacing-v2` instead.

代码改成v2就行:

self.env = gym.make('CarRacing-v2')

再运行,报错:

AttributeError: 'CarRacing' object has no attribute 'seed'

把随机种子注释掉:

# self.env.seed(args.seed)

报错:

File "/home/lcy-magic/RaceCar_Demo/pytorch_car_caring/test.py", line 70, in rgb2graygray = np.dot(rgb[..., :], [0.299, 0.587, 0.114])
TypeError: tuple indices must be integers or slices, not tuple

他说我的rgb是turple类型的,打印出来看看:
在这里插入图片描述

确实不对劲儿,因为还有个{}。刚开始想到怎么回事,就把rgb换成rgb[0],再转成np.array,后面越发不对劲儿,再回过头来看这个问题,才发现症结:

解决方法

rgb来自img_rgb,img_rgb来自step和reset两个函数。关键在于reset函数,这个由于gym改版,返回值不再只是observation还有info。所以,要给代码中所有的step和reset都加上info,问题就解决了。

cuda问题(异步问题)

症状描述

解决上一个问题过程中,其实还出现了cuda问题,报错:

File "/home/lcy-magic/RaceCar_Demo/pytorch_car_caring/test.py", line 127, in forwardv = self.v(x)
File "/home/lcy-magic/anaconda3/envs/CARPPO/lib/python3.10/site-packages/torch/nn/modules/linear.py", line 114, in forwardreturn F.linear(input, self.weight, self.bias)
RuntimeError: CUDA error: CUBLAS_STATUS_NOT_INITIALIZED when calling `cublasCreate(handle)`

解决方法

当时为了先解决上一个问题,直接把设备改成cpu了,先凑活用:

# device = torch.device("cuda" if use_cuda else "cpu")
device = "cpu"

现在再回过头看看到底什么问题:

  • 首先排除代码问题,不可能是维度不对,因为cpu就能跑通,cuda却不行
  • 排除显存问题,网络挺小的,数据也不多,应该不是
  • 可能是版本问题,但我不愿相信

尝试了网上很多方法,都没有作用。就要放弃了,但博客写一半了,不想烂尾,就继续耗着。然后突然想到,这是强化学习的测试,这个报错出现在网络对价值的估计上,我现在又不需要价值,我只需要动作。我手动给价值赋值个常量看看效果:

# v = self.v(x)v = 1

果然,报错变了,这就带来了新的信息:

File "/home/lcy-magic/RaceCar_Demo/pytorch_car_caring/test.py", line 151, in select_actionaction = action.squeeze().cpu().numpy()
RuntimeError: CUDA error: an illegal memory access was encountered
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

也就是把数据放到cpu的时候出现了非法内存访问的问题。
我先尝试把cpu去掉,发现不行,后面程序需要这时把数据扔到cpu处理。然后参考网络回答也没用,GPT也没有具体建议。
这时候我想要不试一试报错的建议:For debugging consider passing CUDA_LAUNCH_BLOCKING=1.看看有没有更多报错。
GPT告诉我要这么用:

CUDA_LAUNCH_BLOCKING=1 python your_script.py

于是我就:

CUDA_LAUNCH_BLOCKING=1 python test.py --render

然后宁猜怎么着?我本来只指望着他给我提供点更多的提示信息,结果这次直接就成功了!

然后就很好奇,这个环境变量CUDA_LAUNCH_BLOCKING到底什么意思,这篇博客参考博客讲的比较清楚了。CPU和GPU可能存在异步执行的情况,这时候如果GPU报错,CPU可能不知道当时给GPU下发的什么任务,只能把自己手头上正在做的事儿当做报错信息发出去,所以可能报错是不准确的,这时候用CUDA_LAUNCH_BLOCKING=1,就可以保证CPU和GPU同步执行。

说明,我这里的问题是异步导致的,暂时先不深究到底发生什么了,反正成功了:
恢复价值的前向计算:

v = self.v(x)

执行测试脚本:

CUDA_LAUNCH_BLOCKING=1 python test.py --render

效果:

在这里插入图片描述

在这里插入图片描述
效果也就那样,基本没有正常跑完一圈的。有的分高,是他最后一段冲刺训练出了一种不是最优,但最逆天的走法,不想描述了,散会。

这篇关于pytorch_car_caring 排坑记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/678462

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

Spring Boot中定时任务Cron表达式的终极指南最佳实践记录

《SpringBoot中定时任务Cron表达式的终极指南最佳实践记录》本文详细介绍了SpringBoot中定时任务的实现方法,特别是Cron表达式的使用技巧和高级用法,从基础语法到复杂场景,从快速启... 目录一、Cron表达式基础1.1 Cron表达式结构1.2 核心语法规则二、Spring Boot中定

pytorch+torchvision+python版本对应及环境安装

《pytorch+torchvision+python版本对应及环境安装》本文主要介绍了pytorch+torchvision+python版本对应及环境安装,安装过程中需要注意Numpy版本的降级,... 目录一、版本对应二、安装命令(pip)1. 版本2. 安装全过程3. 命令相关解释参考文章一、版本对

国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)

《国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)》本文给大家利用deepseek模型搭建私有知识问答库的详细步骤和遇到的问题及解决办法,感兴趣的朋友一起看看吧... 目录1. 第1步大家在安装完ollama后,需要到系统环境变量中添加两个变量2. 第3步 “在cmd中