LangChain 最近发布的一个重要功能:LangGraph

2024-02-04 18:12

本文主要是介绍LangChain 最近发布的一个重要功能:LangGraph,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LangGraph 是 LangChain 最近发布的一个重要功能,LangChain 进入多代理框架领域。通过建立在LangChain 之上,LangGraph 使开发人员可以轻松创建强大的代理运行时。

在这里插入图片描述

LangChain 使用其表达语言(LCEL)为开发人员构建定制链提供技术支持。从数据结构的角度来看,这样的链是一个有向无环图(DAG)。然而,在实践中,用户可能希望使用代理构建循环图。换句话说,代理可以根据模型推理在循环中被调用,直到任务完成。AutoGen就是支持这种机制的框架。

LangGraph专门设计以满足这类用户的需求。换句话说,开发人员可以使用它来构建类似于AutoGen的多代理LLM应用程序。

LangGraph 提供了一种称为状态机的技术,它可以驱动循环代理调用。因此,LangGraph具有三个关键元素:

  1. StateGraph(状态图)
  2. Node(节点)
  3. Edge(边缘)

技术交流&资料

技术要学会分享、交流,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。

成立了大模型技术交流群,本文完整代码、相关资料、技术交流&答疑,均可加我们的交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2060,备注:来自CSDN + 技术交流

通俗易懂讲解大模型系列

  • 做大模型也有1年多了,聊聊这段时间的感悟!

  • 用通俗易懂的方式讲解:大模型算法工程师最全面试题汇总

  • 用通俗易懂的方式讲解:不要再苦苦寻觅了!AI 大模型面试指南(含答案)的最全总结来了!

  • 用通俗易懂的方式讲解:我的大模型岗位面试总结:共24家,9个offer

  • 用通俗易懂的方式讲解:大模型 RAG 在 LangChain 中的应用实战

  • 用通俗易懂的方式讲解:一文讲清大模型 RAG 技术全流程

  • 用通俗易懂的方式讲解:如何提升大模型 Agent 的能力?

  • 用通俗易懂的方式讲解:ChatGPT 开放的多模态的DALL-E 3功能,好玩到停不下来!

  • 用通俗易懂的方式讲解:基于扩散模型(Diffusion),文生图 AnyText 的效果太棒了

  • 用通俗易懂的方式讲解:在 CPU 服务器上部署 ChatGLM3-6B 模型

  • 用通俗易懂的方式讲解:使用 LangChain 和大模型生成海报文案

  • 用通俗易懂的方式讲解:ChatGLM3-6B 部署指南

  • 用通俗易懂的方式讲解:使用 LangChain 封装自定义的 LLM,太棒了

  • 用通俗易懂的方式讲解:基于 Langchain 和 ChatChat 部署本地知识库问答系统

  • 用通俗易懂的方式讲解:在 Ubuntu 22 上安装 CUDA、Nvidia 显卡驱动、PyTorch等大模型基础环境

  • 用通俗易懂的方式讲解:Llama2 部署讲解及试用方式

  • 用通俗易懂的方式讲解:基于 LangChain 和 ChatGLM2 打造自有知识库问答系统

  • 用通俗易懂的方式讲解:一份保姆级的 Stable Diffusion 部署教程,开启你的炼丹之路

  • 用通俗易懂的方式讲解:对 embedding 模型进行微调,我的大模型召回效果提升了太多了

  • 用通俗易懂的方式讲解:LlamaIndex 官方发布高清大图,纵览高级 RAG技术

  • 用通俗易懂的方式讲解:为什么大模型 Advanced RAG 方法对于AI的未来至关重要?

  • 用通俗易懂的方式讲解:使用 LlamaIndex 和 Eleasticsearch 进行大模型 RAG 检索增强生成

  • 用通俗易懂的方式讲解:基于 Langchain 框架,利用 MongoDB 矢量搜索实现大模型 RAG 高级检索方法

  • 用通俗易懂的方式讲解:使用Llama-2、PgVector和LlamaIndex,构建大模型 RAG 全流程

StateGraph

StateGraph 是LangChain的一个类,表示图的数据结构并反映其状态。图的状态由将很快介绍的节点更新。

class State(TypedDict):input: strall_actions: Annotated[List[str], operator.add]graph = StateGraph(State)

Node

图中最关键的元素之一是节点。每个LangGraph节点都有一个名称和其值,它可以是LCEL中的函数或可运行项。每个节点接收一个字典类型的数据,其结构与状态定义相同。节点返回具有相同结构的更新状态。

LangGraph定义了一个称为END的特殊节点,用于识别状态机的结束状态。

from langgraph.graph import END
graph.add_node("model", model)
graph.add_node("tools", tool_executor)

Edge

在图中,节点之间的关系通过边界定义。LangGraph定义了两种类型的边:普通边和条件边。

普通边定义了上游节点应始终调用的其他节点。

graph.add_edge("tools", "model")

条件边,使用函数(路由器)来确定下游节点。

graph.add_conditional_edge("model",should_continue,{"end": END,"continue": "tools"}
)

如上所示,条件边需要三个元素:

  1. 上游节点:边的起点,表示转换的起始点。
  2. 路由函数:此函数根据其返回值有条件地确定应进行转换的下游节点。
  3. 状态映射:根据路由函数的返回值,此映射指定下一个目的地。它将路由函数的可能返回值与相应的下游节点相关联。

运行图
在运行图之前,有两个必要的步骤需要完成:

  1. 设置入口点,以指定图中哪个节点作为入口点
graph.set_entry_point("model")
  1. 编译
app = graph.compile()

现在,我们可以运行LangGraph应用程序如下:

app.stream({"messages": [HumanMessage(content="Write a tweet about LangChain news")]}
)

用例

这是一个示例。图包含三个节点:主管、搜索引擎和 Twitter 作者。根据需要,主管可能多次调用搜索引擎以检索所需数据,然后将数据转发给Twitter作者以撰写推文。因此,在主管和搜索引擎之间存在循环。

LangChain可以帮助开发人员轻松构建基于工具的代理,然后基于这些代理创建节点。

定义图状态

class AgentState(TypedDict):messages: Annotated[Sequence[BaseMessage], operator.add]next: str

声明工具函数

@tool("web_search")
def web_search(query: str) -> str:"""通过查询使用Google SERP API进行搜索"""search = SerpAPIWrapper()return search.run(query)@tool("twitter_writer")
def write_tweet(content: str) -> str:"""根据内容编写推文。"""chat = ChatOpenAI()messages = [SystemMessage(content="您是Twitter帐户操作员。您负责根据给定的内容撰写推文。您应遵循Twitter政策,并确保每条推文不超过140个字符。"),HumanMessage(content=content),]response = chat(messages)return response.content

辅助函数 —— 使用工具创建代理

def create_agent(llm: ChatOpenAI, tools: list, system_prompt: str):prompt = ChatPromptTemplate.from_messages([("system",system_prompt,),MessagesPlaceholder(variable_name="messages"),MessagesPlaceholder(variable_name="agent_scratchpad"),])agent = create_openai_tools_agent(llm, tools, prompt)executor = AgentExecutor(agent=agent, tools=tools)return executor

辅助函数 —— 使用代理创建节点

def agent_node(state, agent, name):result = agent.invoke(state)return {"messages": [HumanMessage(content=result["output"], name=name)]}

创建主管节点

members = ["Search_Engine", "Twitter_Writer"]
system_prompt = ("您是一名主管,负责管理以下工作者之间的对话:{members}。给定以下用户请求,使用下一步操作进行回复。每个工作者将执行一个任务,并回复其结果和状态。完成后,使用FINISH进行回复。"
)
options = ["FINISH"] + members
function_def = {"name": "route","description": "选择下一个角色。","parameters": {"title": "routeSchema","type": "object","properties": {"next": {"title": "Next","anyOf": [{"enum": options},],}},"required": ["next"],},
}
prompt = ChatPromptTemplate.from_messages([("system", system_prompt),MessagesPlaceholder(variable_name="messages"),("system","根据以上对话,下一个应该采取行动的人是谁?还是我们应该结束?选择一个:{options}",),]
).partial(options=str(options), members=", ".join(members))
supervisor_chain = (prompt| llm.bind_functions(functions=[function_def], function_call="route")| JsonOutputFunctionsParser()
)

创建节点和边缘

search_engine_agent = create_agent(llm, [web_search], "您是一个网络搜索引擎。")
search_engine_node = functools.partial(agent_node, agent=search_engine_agent, name="Search_Engine")
twitter_operator_agent = create_agent(llm, [write_tweet], "您负责根据给定的内容撰写推文。")
twitter_operator_node = functools.partial(agent_node, agent=twitter_operator_agent, name="Twitter_Writer")
workflow = StateGraph(AgentState)
workflow.add_node("Search_Engine", search_engine_node)
workflow.add_node("Twitter_Writer", twitter_operator_node)
workflow.add_node("supervisor", supervisor_chain)
for member in members:workflow.add_edge(member, "supervisor")
conditional_map = {k: k for k in members}
conditional_map["FINISH"] = END
workflow.add_conditional_edges("supervisor", lambda x: x["next"], conditional_map)

编译

workflow.set_entry_point("supervisor")
graph = workflow.compile()

现在我们可以使用此图执行任务。让我们要求它搜索LangChain新闻并撰写一条推文:

for s in graph.stream({"messages": [HumanMessage(content="Write a tweet about LangChain news")]}
):if "__end__" not in s:print(s)print("----")

参考文献

  • https://ai.gopubby.com/langgraph-absolute-beginners-guide-cd4a05336312
  • https://github.com/sugarforever/LangChain-Tutorials/blob/main/langgraph_nodes_edges.ipynb

这篇关于LangChain 最近发布的一个重要功能:LangGraph的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/678388

相关文章

SpringBoot整合DeepSeek实现AI对话功能

《SpringBoot整合DeepSeek实现AI对话功能》本文介绍了如何在SpringBoot项目中整合DeepSeekAPI和本地私有化部署DeepSeekR1模型,通过SpringAI框架简化了... 目录Spring AI版本依赖整合DeepSeek API key整合本地化部署的DeepSeek

Python实现多路视频多窗口播放功能

《Python实现多路视频多窗口播放功能》这篇文章主要为大家详细介绍了Python实现多路视频多窗口播放功能的相关知识,文中的示例代码讲解详细,有需要的小伙伴可以跟随小编一起学习一下... 目录一、python实现多路视频播放功能二、代码实现三、打包代码实现总结一、python实现多路视频播放功能服务端开

css实现图片旋转功能

《css实现图片旋转功能》:本文主要介绍了四种CSS变换效果:图片旋转90度、水平翻转、垂直翻转,并附带了相应的代码示例,详细内容请阅读本文,希望能对你有所帮助... 一 css实现图片旋转90度.icon{ -moz-transform:rotate(-90deg); -webkit-transfo

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

Java中使用Java Mail实现邮件服务功能示例

《Java中使用JavaMail实现邮件服务功能示例》:本文主要介绍Java中使用JavaMail实现邮件服务功能的相关资料,文章还提供了一个发送邮件的示例代码,包括创建参数类、邮件类和执行结... 目录前言一、历史背景二编程、pom依赖三、API说明(一)Session (会话)(二)Message编程客

Java CompletableFuture如何实现超时功能

《JavaCompletableFuture如何实现超时功能》:本文主要介绍实现超时功能的基本思路以及CompletableFuture(之后简称CF)是如何通过代码实现超时功能的,需要的... 目录基本思路CompletableFuture 的实现1. 基本实现流程2. 静态条件分析3. 内存泄露 bug

C#实现系统信息监控与获取功能

《C#实现系统信息监控与获取功能》在C#开发的众多应用场景中,获取系统信息以及监控用户操作有着广泛的用途,比如在系统性能优化工具中,需要实时读取CPU、GPU资源信息,本文将详细介绍如何使用C#来实现... 目录前言一、C# 监控键盘1. 原理与实现思路2. 代码实现二、读取 CPU、GPU 资源信息1.

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将