MySQL进阶45讲【13】为什么表数据删掉一半,表文件大小不变?

2024-02-04 13:44

本文主要是介绍MySQL进阶45讲【13】为什么表数据删掉一半,表文件大小不变?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 前言

有些小伙伴在删数据库数据时,会产生一个疑问,我的数据库占用空间大,我把一个最大的表删掉了一半的数据,怎么表文件的大小还是没变?

那么这篇文章,就介绍一下数据库表的空间回收,看看如何解决这个问题。

这里,我们还是针对MySQL中应用最广泛的InnoDB引擎展开讨论。一个InnoDB表包含两部分,即:表结构定义和数据。在MySQL 8.0版本以前,表结构是存在以.frm为后缀的文件里。而MySQL 8.0版本,则已经允许把表结构定义放在系统数据表中了。因为表结构定义占用的空间很小,所以我们今天主要讨论的是表数据。

接下来,先说明为什么简单地删除表数据达不到表空间回收的效果,然后再介绍正确回收空间的方法。

2 参数innodb_file_per_table

表数据既可以存在共享表空间里,也可以是单独的文件。这个行为是由参数innodb_file_per_table控制的:

  1. 这个参数设置为OFF表示的是,表的数据放在系统共享表空间,也就是跟数据字典放在一起;
  2. 这个参数设置为ON表示的是,每个InnoDB表数据存储在一个以 .ibd为后缀的文件中。从MySQL 5.6.6版本开始,它的默认值就是ON了。

建议不论使用MySQL的哪个版本,都将这个值设置为ON。因为,一个表单独存储为一个文件更容易管理,而且在不需要这个表的时候,通过drop table命令,系统就会直接删除这个文件。而如果是放在共享表空间中,即使表删掉了,空间也是不会回收的。

所以,将innodb_file_per_table设置为ON,是推荐做法,我们接下来的讨论都是基于这个设置展开的。

我们在删除整个表的时候,可以使用drop table命令回收表空间。但是,我们遇到的更多的删除数据的场景是删除某些行,这时就遇到了我们文章开头的问题:表中的数据被删除了,但是表空间却没有被回收。

我们要彻底搞明白这个问题的话,就要从数据删除流程说起了。

3 数据删除流程

我们先再来看一下InnoDB中一个索引的示意图。在前面MySQL进阶45讲【4】索引原理剖析(上)和MySQL进阶45讲【5】索引原理剖析(下)两篇文章中,介绍索引时曾经提到过,InnoDB里的数据都是用B+树的结构组织的。

图1 B+树索引示意图
假设,我们要删掉R4这个记录,InnoDB引擎只会把R4这个记录标记为删除。如果之后要再插入一个ID在300和600之间的记录时,可能会复用这个位置。但是,磁盘文件的大小并不会缩小。

现在,我们知道了InnoDB的数据是按页存储的,那么如果我们删掉了一个数据页上的所有记录,会怎么样?

答案是,整个数据页就可以被复用了。

但是,数据页的复用跟记录的复用是不同的

记录的复用,只限于符合范围条件的数据。比如上面的这个例子,R4这条记录被删除后,如果插入一个ID是400的行,可以直接复用这个空间。但如果插入的是一个ID是800的行,就不能复用这个位置了。

而当整个页从B+树里面摘掉以后,可以复用到任何位置。以图1为例,如果将数据页page A上的所有记录删除以后,page A会被标记为可复用。这时候如果要插入一条ID=50的记录需要使用新页的时候,page A是可以被复用的。

如果相邻的两个数据页利用率都很小,系统就会把这两个页上的数据合到其中一个页上,另外一个数据页就被标记为可复用。

进一步地,如果我们用delete命令把整个表的数据删除呢?结果就是,所有的数据页都会被标记
为可复用。但是磁盘上,文件不会变小。

根据上面,我们知道了delete命令其实只是把记录的位置,或者数据页标记为了“可复用”,但磁盘文件的大小是不会变的。也就是说,通过delete命令是不能回收表空间的。这些可以复用,而没有被使用的空间,看起来就像是“空洞”。

实际上,不止是删除数据会造成空洞,插入数据也会。

如果数据是按照索引递增顺序插入的,那么索引是紧凑的。但如果数据是随机插入的,就可能造
成索引的数据页分裂。

假设图1中page A已经满了,这时要再插入一行数据,会怎样呢?

图2 插入数据导致页分裂
可以看到,由于page A满了,再插入一个ID是550的数据时,就不得不再申请一个新的页面page B来保存数据了。页分裂完成后,page A的末尾就留下了空洞(注意:实际上,可能不止1个记录的位置是空洞)。

另外,更新索引上的值,可以理解为删除一个旧的值,再插入一个新值。不难理解,这也是会造成空洞的。

也就是说,经过大量增删改的表,都是可能是存在空洞的。所以,如果能够把这些空洞去掉,就能达到收缩表空间的目的。

而重建表,就可以达到这样的目的。

4 重建表

试想一下,如果现在有一个表A,需要做空间收缩,为了把表中存在的空洞去掉,可以怎么做呢?

可以新建一个与表A结构相同的表B,然后按照主键ID递增的顺序,把数据一行一行地从表A里读出来再插入到表B中。

由于表B是新建的表,所以表A主键索引上的空洞,在表B中就都不存在了。显然地,表B的主键索引更紧凑,数据页的利用率也更高。如果我们把表B作为临时表,数据从表A导入表B的操作完成后,用表B替换A,从效果上看,就起到了收缩表A空间的作用。

这里,可以使用alter table A engine=InnoDB命令来重建表。在MySQL 5.5版本之前,这个命令的执行流程跟我们前面描述的差不多,区别只是这个临时表B不需要自己创建,MySQL会自动完成转存数据、交换表名、删除旧表的操作。

图3 改锁表DDL
显然,花时间最多的步骤是往临时表插入数据的过程,如果在这个过程中,有新的数据要写入到表A的话,就会造成数据丢失。因此,在整个DDL过程中,表A中不能有更新。也就是说,这个DDL不是Online的。

而在MySQL 5.6版本开始引入的Online DDL,对这个操作流程做了优化

下面简单描述一下引入了Online DDL之后,重建表的流程:

  1. 建立一个临时文件,扫描表A主键的所有数据页;
  2. 用数据页中表A的记录生成B+树,存储到临时文件中;
  3. 生成临时文件的过程中,将所有对A的操作记录在一个日志文件(rowlog)中,对应的是图中state2的状态;
  4. 临时文件生成后,将日志文件中的操作应用到临时文件,得到一个逻辑数据上与表A相同的数据文件,对应的就是图中state3的状态;
  5. 用临时文件替换表A的数据文件。

图4Online DDL
可以看到,与图3(上一张图)过程的不同之处在于,由于日志文件记录和重放操作这个功能的存在,这个方案在重建表的过程中,允许对表A做增删改操作。这也就是Online DDL名字的来源。

有人可能会有疑问,DDL之前是要拿MDL写锁的,这样还能叫Online DDL吗?

确实,图4的流程中,alter语句在启动的时候需要获取MDL写锁,但是这个写锁在真正拷贝数据之前就退化成读锁了。

为什么要退化呢?为了实现Online,MDL读锁不会阻塞增删改操作。

那为什么不干脆直接解锁呢?为了保护自己,禁止其他线程对这个表同时做DDL。

而对于一个大表来说,Online DDL最耗时的过程就是拷贝数据到临时表的过程,这个步骤的执行期间可以接受增删改操作。所以,相对于整个DDL过程来说,锁的时间非常短。对业务来说,就可以认为是Online的。

需要补充说明的是,上述的这些重建方法都会扫描原表数据和构建临时文件。对于很大的表来说,这个操作是很消耗IO和CPU资源的。因此,如果是线上服务,要很小心地控制操作时间。如果想要比较安全的操作的话,推荐使用GitHub开源的gh-ost来做。

5 Online 和 inplace

说到Online,需要再理清一下它和另一个跟DDL有关的、容易混淆的概念inplace的区别。

在图3(4 重建表的第一张图)中,我们把表A中的数据导出来的存放位置叫作tmp_table。这是一个临时表,是在server层创建的。

在图4中,根据表A重建出来的数据是放在“tmp_file”里的,这个临时文件是InnoDB在内部创建出来的。整个DDL过程都在InnoDB内部完成。对于server层来说,没有把数据挪动到临时表,是一个“原地”操作,这就是“inplace”名称的来源。

如果有一个1TB的表,现在磁盘间是1.2TB,能不能做一个inplace的DDL呢?

答案是不能。因为,tmp_file也是要占用临时空间的。

我们重建表的这个语句alter table t engine=InnoDB,其实隐含的意思是:

alter table t engine=innodb,ALGORITHM=inplace;

跟inplace对应的就是拷贝表的方式了,用法是:

alter table t engine=innodb,ALGORITHM=copy;

当使用ALGORITHM=copy的时候,表示的是强制拷贝表,对应的流程就是图3(4 重建表的第一张图)的操作过程。

大家可能会疑问,inplace跟Online是不是就是一个意思?

其实不是的,只是在重建表这个逻辑中刚好是这样而已。

比如,如果要给InnoDB表的一个字段加全文索引,写法是:

alter table t add FULLTEXT(field_name);

这个过程是inplace的,但会阻塞增删改操作,是非Online的。如果说这两个逻辑之间的关系是什么的话,可以概括为:

  1. DDL过程如果是Online的,就一定是inplace的;
  2. 反过来未必,也就是说inplace的DDL,有可能不是Online的。截止到MySQL 8.0,添加全文索引(FULLTEXTindex)和空间索引(SPATIAL index)就属于这种情况。

最后,我们再延伸一下。

看完MySQL进阶45讲【10】MySQL为什么有时候会选错索引?这篇文章后,有小伙伴可能会疑惑使用optimize table、analyze table和alter table这三种方式重建表的区别。这里,再简单和大家解释一下。

  • 从MySQL 5.6版本开始,alter table t engine = InnoDB(也就是recreate)默认的就是上面图4(4 重建表的第二张图)的流程了;

  • analyze table t 其实不是重建表,只是对表的索引信息做重新统计,没有修改数据,这个过程中加了MDL读锁;

  • optimize table t 等于recreate+analyze。

6 小结

今天这篇文章,主要讨论了数据库中收缩表空间的方法。

如果要收缩一个表,只是delete掉表里面不用的数据的话,表文件的大小是不会变的,还要通过alter table命令重建表,才能达到表文件变小的目的。介绍了重建表的两种实现方式,Online DDL的方式是可以考虑在业务低峰期使用的,而MySQL 5.5及之前的版本,这个命令是会阻塞DML的,这个需要特别小心。

这篇关于MySQL进阶45讲【13】为什么表数据删掉一半,表文件大小不变?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/677704

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

SQL中的外键约束

外键约束用于表示两张表中的指标连接关系。外键约束的作用主要有以下三点: 1.确保子表中的某个字段(外键)只能引用父表中的有效记录2.主表中的列被删除时,子表中的关联列也会被删除3.主表中的列更新时,子表中的关联元素也会被更新 子表中的元素指向主表 以下是一个外键约束的实例展示

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

如何去写一手好SQL

MySQL性能 最大数据量 抛开数据量和并发数,谈性能都是耍流氓。MySQL没有限制单表最大记录数,它取决于操作系统对文件大小的限制。 《阿里巴巴Java开发手册》提出单表行数超过500万行或者单表容量超过2GB,才推荐分库分表。性能由综合因素决定,抛开业务复杂度,影响程度依次是硬件配置、MySQL配置、数据表设计、索引优化。500万这个值仅供参考,并非铁律。 博主曾经操作过超过4亿行数据

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory