本文主要是介绍Doing Math with Python读书笔记-第4章:Algebra and Symbolic Math with SymPy,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
之前我们的操作都是使用数值,还有一种方式是使用符号,如x, y,我们称为符号数学。
我们使用SymPy
库来实现书写表达式以及运算,安装如下:
$ pip3 install --user sympy
定义符号和符号操作
符号就是在代数和方程式中的变量。
>>> x=1; y=2
>>> 2*x + 3*y + 1
9
使用符号操作需要引入Symbol类,可以看到,现在x和y不用预先赋值了:
>>> from sympy import Symbol
>>> x = Symbol('x'); y = Symbol('y')
>>> 2*x + 3*y + 1
2*x + 3*y + 1
Symbol中的参数必须是字符串,表示变量名。
虽然变量的名字和符号的名字可以不一样,但建议一样:
>>> x.name; y.name;
'x'
'y'
>>> abc = Symbol('x')
>>> abc.name
'x'
>>> type(abc)
<class 'sympy.core.symbol.Symbol'>
多个变量名赋值可采用以下简略形式:
>>> x,y,z = symbols('x,y,z')
>>> x.name, y.name, z.name
('x', 'y', 'z')
一些基本的运算会做展开,但复杂的不会:
>>> x + 2*x
3*x
>>> x*(2*x)
2*x**2
>>> x*(x + 2) # 不会展开
x*(x + 2)
操作表达式
因式分解和展开表达式
因式分解(factorize )用factor(),展开用expand()。
>>> from sympy import Symbol, factor, expand
>>> x = Symbol('x')
>>> y = Symbol('y')
>>> factor(x**2 + 2*x + 1) # 分解,x^2 + 2x +1 = (x + 1)^2
(x + 1)**2
>>> expand((x + 1)*(y + 1)) # 展开
x*y + x + y + 1
>>> expand(factor(x**2 + 2*x + 1))
x**2 + 2*x + 1
美化输出
>>> expr = x**2 + 2*x + 1
>>> print(expr)
x**2 + 2*x + 1
>>> from sympy import pprint
>>> pprint(expr) # 没有想象中的美2
x + 2⋅x + 1
可以将表达式按升序排列,init_printing还有许多格式设定,详见帮助:
>>> from sympy import init_printing
>>> init_printing(order='rev-lex')
>>> expr2
1 + 2⋅x + x
>>> expr = x**2/2
>>> expr2
x
──
2
代入变量
>>> expr = 2*x + y + 1
>>> expr
1 + y + 2⋅x
>>> expr.subs({x:2, y:3})
8
>>> expr
1 + y + 2⋅x
更强大的是可以代入表达式:
>>> expr
1 + y + 2⋅x
>>> expr.subs({x:y})
1 + 3⋅y
>>> expr.subs({x:y-1})
-1 + 3⋅y
>>> expr.subs({x:2, y:x-1}) # 这个还不够聪明,因为是从左到右替代的
4 + x
>>> expr.subs({x:y+1, y:3}) # 写成这种方式就可以了
12
代入值的制定是通过字典数据类型,是键值对的集合。详见说明。
simplify()可以做合并等简化:
>>> from sympy import simplify>>> expr = x**2 + 2*x*y + y**2
>>> expr.subs({x:y-1})2 2
(-1 + y) + 2⋅y⋅(-1 + y) + y
>>> sub = expr.subs({x:y-1})
>>> simplify(sub)2
1 - 4⋅y + 4⋅y
以下是一个综合的示例,计算 x + x 2 2 + x 3 3 + x 4 4 + . . . x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + ... x+2x2+3x3+4x4+...
from sympy import Symbol, pprint, factor, expand, init_printingdef gen_expr(n):x = Symbol('x')e = xfor i in range(2, n+1):e += (x**i)/i result = e.subs({x:v})pprint(e)print(f'result is: {result}')return en = int(input('Enter the number of terms:'))
v = int(input('Enter the value of variable:'))
gen_expr(n)
运行:
$ p3 formula.py
Enter the number of terms:4
Enter the value of variable:24 3 2
x x x
── + ── + ── + x
4 3 2
result is: 32/3
很奇怪,以下的代码运行失败:
from sympy import Symbol, pprint, factor, expand, init_printingdef gen_expr(n):x = Symbol('x')e = xfor i in range(2, n+1):e += (x**i)/i return en = int(input('Enter the number of terms:'))
v = int(input('Enter the value of variable:'))
expr = gen_expr(n)
result = expr.subs({x:v})
print(f'result is: {result}')
运行:
$ p3 formula.py
Enter the number of terms:4
Enter the value of variable:2
Traceback (most recent call last):File "formula.py", line 15, in <module>result = expr.subs({x:v})
NameError: name 'x' is not defined
改成一下就好了,看来还是变量范围的问题:
from sympy import Symbol, pprint, factor, expand, init_printingx = Symbol('x')def gen_expr(n):e = xfor i in range(2, n+1):e += (x**i)/ireturn en = int(input('Enter the number of terms:'))
v = int(input('Enter the value of variable:'))
expr = gen_expr(n)
result = expr.subs({x:v})
print(f'result is: {result}')
将字符串转换为数学表达式
>>> from sympy import sympify
>>> expr = 'x**2 + 2*x + 1'
>>> expr = sympify(expr)
>>> expr2
1 + 2⋅x + x
>>> type(expr)
<class 'sympy.core.add.Add'>
>>> expr * expr2
⎛ 2⎞
⎝1 + 2⋅x + x ⎠
>>> 2 * expr2
2 + 4⋅x + 2⋅x
注意输入必须是有效的,否则抛出SympifyError
异常。例如2*x不能写成2x。
sympify
有个明显的好处,就是不用预先定义Symbol了:
>>> from sympy import Symbol, sympify
>>> expr1 = sympify('x + 1')
>>> expr2 = sympify('y + 1')
>>> expr3 = expr1 * expr2
>>> expr2
1 + y
>>> expr3
(1 + x)⋅(1 + y)
>>> expand(expr3)
1 + y + x + x⋅y
解方程
使用solve(),其总是假设表达式等于0:
>>> from sympy import Symbol, sympify, solve
>>> expr = sympify('x**2 + 2*x + 1')
>>> expr2
1 + 2⋅x + x
>>> solve(expr)
[-1]
>>> expr = sympify('(x + 1)*(y -1)')
>>> solve(expr)
[{x: -1}, {y: 1}]
解二次方程
二次方程(Quadratic Equations)。以下方程有多个解:
>>> expr = sympify('x**2 + 5*x + 4')
>>> solve(expr)
[-4, -1]
复数方程式也可以解:
>>> x=Symbol('x')
>>> expr = x**2 + x + 1
>>> solve(expr) # i表示虚数,是-1的平方根(imaginary)
⎡ √3⋅ⅈ 1 √3⋅ⅈ 1⎤
⎢- ──── - ─, ──── - ─⎥
⎣ 2 2 2 2⎦
>>> solve(expr, dict=True) # 字典形式
⎡⎧ √3⋅ⅈ 1⎫ ⎧ √3⋅ⅈ 1⎫⎤
⎢⎨x: - ──── - ─⎬, ⎨x: ──── - ─⎬⎥
⎣⎩ 2 2⎭ ⎩ 2 2⎭⎦
也可以只求解一个变量,这个变量用其余的变量表示,注意solve()中多指定了一个参数:
>>> a=Symbol('a')
>>> b=Symbol('b')
>>> x=Symbol('x')
>>> expr = a*x**2 + b*x + 1
>>> solve(expr, x)
⎡ __________ ⎛ __________ ⎞ ⎤
⎢ ╱ 2 ⎜ ╱ 2 ⎟ ⎥
⎢╲╱ b - 4⋅a - b -⎝╲╱ b - 4⋅a + b⎠ ⎥
⎢─────────────────, ─────────────────────⎥
⎣ 2⋅a 2⋅a ⎦
作者给了个运动方程式(equations of motion)的例子,其中a是加速度,t是时间, μ \mu μ是速度,s是距离:
s = μ t + 1 2 a t 2 s=\mu{t}+\frac{1}{2}at^2 s=μt+21at2
可以计算下距离一定时所需的时间。
解线性方程组
>>> x = Symbol('x')
>>> y = Symbol('y')
>>> expr1 = x + 3*y - 11
>>> expr2 = x - 2*y - 1
>>> solve((expr1, expr2))
{x: 5, y: 2}
以下是验算过程:
>>> sol = solve((expr1, expr2), dict=True)
>>> sol[0]
{x: 5, y: 2}
>>> sol[0][x]
5
>>> sol[0][y]
2
>>> expr1.subs({x:5, y:2})
0
>>> expr2.subs({x:5, y:2})
0
使用SYMPY绘图
在前面的章节,我们用matplotlib
绘图,但必须指定x和y的值。而使用sympy
绘图,只需给出公式就可以了。
>>> from sympy.plotting import plot
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> plot(x**2 + 2*x + 1)Plot object containing:
[0]: cartesian line: x**2 + 2*x + 1 for x over (-10.0, 10.0)
>>> plot((x**2 + 2*x + 1), (x, -100, 100)) # 可指定x的取值区间Plot object containing:
[0]: cartesian line: x**2 + 2*x + 1 for x over (-100.0, 100.0)
第一个输出如下:
指定标题与标签:
>>> plot(x**2 + 2*x + 1, title='A Line', xlabel='x', ylabel='2x+3')
不显示,仅存为文件:
>>> p = plot(x**2 + 2*x + 1, show = False)
>>> p.save('f.png')
绘制用户输入的表达式
- 用户输入的表达式有两个变量x和y,通过sympify()转换为符号表达式,
- 通过solve(表达式, y)得到x和y的关系
- 通过plot()绘图
绘制多个函数
>>> plot(x**2 + 2*x + 1, x**2 - 2*x + 1)
调用plot()时,默认程序会阻塞,直到图形关闭。以下是一种延后到show()调用时阻塞的方法:
>>> p=plot(x**2 + 2*x + 1, x**2 - 2*x + 1, show=False)
>>> pPlot object containing:
[0]: cartesian line: x**2 + 2*x + 1 for x over (-10.0, 10.0)
[1]: cartesian line: x**2 - 2*x + 1 for x over (-10.0, 10.0)
>>> p[0].line_color = 'r' # 红色线
>>> p[1].line_color = 'b' # 蓝色线
>>> p.legend = True
>>> p.show()
编程挑战
因式分解
用户输入表达式,然后做因式分解:
>>> x = Symbol('x')
>>> expr = x**3 + 3*x**2 + 3*x + 1
>>> factor(expr)3
(1 + x)
二元一次方程绘图
代码:
from sympy import Symbol, sympify, solve
from sympy.plotting import plotexpr1 = input('Enter your first expression in terms of x and y: ')
expr2 = input('Enter your second expression in terms of x and y: ')sol1 = solve(expr1, 'y') # solve()也可以接受字符串,不仅仅是符号表达式
sol2 = solve(expr2, 'y')p = plot(sol1[0], sol2[0], show=False)
p[0].line_color = 'r'
p[1].line_color = 'b'
p.legend = True
p.show()
输出:
$ p3 eqplot.py
Enter your first expression in terms of x and y: y + 2*x + 1
Enter your second expression in terms of x and y: y - 2*x + 1
序列求和
∑ x = 1 10 1 x \displaystyle\sum_{x=1}^{10}\frac{1}{x} x=1∑10x1
>>> from sympy import Symbol, summation, pprint
>>> x = Symbol('x')
>>> s = summation(1/x, (x, 1, 10))
>>> s
7381
────
2520
又如:
∑ n = 1 10 x n n \displaystyle\sum_{n=1}^{10}\frac{x^n}{n} n=1∑10nxn
>>> x = Symbol('x')
>>> n = Symbol('n')
>>> s = summation(x**n/n, (n, 1, 10))
>>> s2 3 4 5 6 7 8 9 10x x x x x x x x x
x + ── + ── + ── + ── + ── + ── + ── + ── + ───2 3 4 5 6 7 8 9 10
>>> s.subs({x:1})
7381
────
2520
单变量不等式
solve()也支持不等式的求解,支持的不等式类型包括多项式(polynomial),有理式(rational expression)。
先来看多项式。多项式中只有一个变量,只有加减乘操作,幂都是正数。
>>> from sympy import Poly, Symbol, solve_poly_inequality
>>> x = Symbol('x')
>>> ineq_obj = x**2 -4 > 0
>>> lhs = ineq_obj.lhs # 提取不等式左边部分
>>> lhs2
-4 + x
>>> p = Poly(lhs, x)
>>> p
Poly(x**2 - 4, x, domain='ZZ')
>>> rel = ineq_obj.rel_op # 提取操作符
>>> rel
>
>>> solve_poly_inequality(p, rel)
[(-∞, -2), (2, ∞)]
再来看有理式,也称为分式。有理式的分子和分母都是多项式。
>>> from sympy import Symbol, Poly, solve_rational_inequalities
>>> x = Symbol('x')
>>> ineq_obj = ((x-1)/(x+2)) > 0
>>> lhs = ineq_obj.lhs
>>> lhs
-1 + x
──────
2 + x
>>> numer, denom = lhs.as_numer_denom()
>>> numer # 分子(numerator)
-1 + x
>>> denom # 分母(Denominator)
2 + x
>>> p1 = Poly(numer)
>>> p1
Poly(x - 1, x, domain='ZZ')
>>> p2 = Poly(denom)
>>> p2
Poly(x + 2, x, domain='ZZ')
>>> rel = ineq_obj.rel_op
>>> solve_rational_inequalities([[((p1, p2), rel)]])
(-∞, -2) ∪ (1, ∞)
最后看一下其它类型的不等式,例如sin(x) - 0.6 > 0
:
>>> from sympy import Symbol, solve, solve_univariate_inequality, sin
>>> x = Symbol('x')
>>> ineq_obj = sin(x) - 0.6 > 0
>>> solve_univariate_inequality(ineq_obj, x, relational=False)
(0.643501108793284, π - 0.643501108793284)
is_polynomial()
可以检测表达式是否为多项式。
>>> x = Symbol('x')
>>> expr = x**2 + 2*x + 1
>>> expr.is_polynomial()
True
>>> expr = sin(x)
>>> expr.is_polynomial()
False
is_rational_function()
可判断表达式是否为有理式。
sympify()
也可以将不等式字符串转换为表达式。
这篇关于Doing Math with Python读书笔记-第4章:Algebra and Symbolic Math with SymPy的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!