Doing Math with Python读书笔记-第4章:Algebra and Symbolic Math with SymPy

2024-02-04 12:48

本文主要是介绍Doing Math with Python读书笔记-第4章:Algebra and Symbolic Math with SymPy,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

之前我们的操作都是使用数值,还有一种方式是使用符号,如x, y,我们称为符号数学。
我们使用SymPy库来实现书写表达式以及运算,安装如下:

$ pip3 install --user sympy

定义符号和符号操作

符号就是在代数和方程式中的变量。

>>> x=1; y=2
>>> 2*x + 3*y + 1
9

使用符号操作需要引入Symbol类,可以看到,现在x和y不用预先赋值了:

>>> from sympy import Symbol
>>> x = Symbol('x');  y = Symbol('y')
>>> 2*x + 3*y + 1
2*x + 3*y + 1

Symbol中的参数必须是字符串,表示变量名。
虽然变量的名字和符号的名字可以不一样,但建议一样:

>>> x.name;  y.name;
'x'
'y'
>>> abc = Symbol('x')
>>> abc.name
'x'
>>> type(abc)
<class 'sympy.core.symbol.Symbol'>

多个变量名赋值可采用以下简略形式:

>>> x,y,z = symbols('x,y,z')
>>> x.name, y.name, z.name
('x', 'y', 'z')

一些基本的运算会做展开,但复杂的不会:

>>> x + 2*x
3*x
>>> x*(2*x)
2*x**2
>>> x*(x + 2)	# 不会展开
x*(x + 2)

操作表达式

因式分解和展开表达式
因式分解(factorize )用factor(),展开用expand()。

>>> from sympy import Symbol, factor, expand
>>> x = Symbol('x')
>>> y = Symbol('y')
>>> factor(x**2 + 2*x + 1)	# 分解,x^2 + 2x +1 = (x + 1)^2
(x + 1)**2
>>> expand((x + 1)*(y + 1))	# 展开
x*y + x + y + 1
>>> expand(factor(x**2 + 2*x + 1))
x**2 + 2*x + 1

美化输出

>>> expr = x**2 + 2*x + 1
>>> print(expr)
x**2 + 2*x + 1
>>> from sympy import pprint
>>> pprint(expr)	# 没有想象中的美2          
x  + 2⋅x + 1

可以将表达式按升序排列,init_printing还有许多格式设定,详见帮助:

>>> from sympy import init_printing
>>> init_printing(order='rev-lex')
>>> expr2
1 + 2⋅x + x 
>>> expr = x**2/2
>>> expr2
x 
──
2 

代入变量

>>> expr = 2*x + y + 1
>>> expr
1 + y + 2⋅x 
>>> expr.subs({x:2, y:3})
8
>>> expr
1 + y + 2⋅x

更强大的是可以代入表达式:

>>> expr
1 + y + 2⋅x
>>> expr.subs({x:y})
1 + 3⋅y
>>> expr.subs({x:y-1})
-1 + 3⋅y
>>> expr.subs({x:2, y:x-1})	# 这个还不够聪明,因为是从左到右替代的
4 + x
>>> expr.subs({x:y+1, y:3})	# 写成这种方式就可以了
12

代入值的制定是通过字典数据类型,是键值对的集合。详见说明。
simplify()可以做合并等简化:

>>> from sympy import simplify>>> expr = x**2 + 2*x*y + y**2
>>> expr.subs({x:y-1})2                   2
(-1 + y)  + 2⋅y⋅(-1 + y) + y 
>>> sub = expr.subs({x:y-1})
>>> simplify(sub)2
1 - 4⋅y + 4⋅y 

以下是一个综合的示例,计算 x + x 2 2 + x 3 3 + x 4 4 + . . . x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + ... x+2x2+3x3+4x4+...

from sympy import Symbol, pprint, factor, expand, init_printingdef gen_expr(n):x = Symbol('x')e = xfor i in range(2, n+1):e += (x**i)/i result = e.subs({x:v})pprint(e)print(f'result is: {result}')return en = int(input('Enter the number of terms:'))
v = int(input('Enter the value of variable:'))
gen_expr(n)

运行:

$ p3 formula.py
Enter the number of terms:4
Enter the value of variable:24    3    2    
x    x    x     
── + ── + ── + x
4    3    2     
result is: 32/3

很奇怪,以下的代码运行失败:

from sympy import Symbol, pprint, factor, expand, init_printingdef gen_expr(n):x = Symbol('x')e = xfor i in range(2, n+1):e += (x**i)/i return en = int(input('Enter the number of terms:'))
v = int(input('Enter the value of variable:'))
expr = gen_expr(n)
result = expr.subs({x:v})
print(f'result is: {result}')

运行:

$ p3 formula.py
Enter the number of terms:4
Enter the value of variable:2
Traceback (most recent call last):File "formula.py", line 15, in <module>result = expr.subs({x:v})
NameError: name 'x' is not defined

改成一下就好了,看来还是变量范围的问题:

from sympy import Symbol, pprint, factor, expand, init_printingx = Symbol('x')def gen_expr(n):e = xfor i in range(2, n+1):e += (x**i)/ireturn en = int(input('Enter the number of terms:'))
v = int(input('Enter the value of variable:'))
expr = gen_expr(n)
result = expr.subs({x:v})
print(f'result is: {result}')

将字符串转换为数学表达式

>>> from sympy import sympify
>>> expr = 'x**2 + 2*x + 1'
>>> expr = sympify(expr)
>>> expr2
1 + 2⋅x + x 
>>> type(expr)
<class 'sympy.core.add.Add'>
>>> expr * expr22⎞ 
⎝1 + 2⋅x + x ⎠ 
>>> 2 * expr2
2 + 4⋅x + 2⋅x 

注意输入必须是有效的,否则抛出SympifyError异常。例如2*x不能写成2x。
sympify有个明显的好处,就是不用预先定义Symbol了:

>>> from sympy import Symbol, sympify
>>> expr1 = sympify('x + 1')
>>> expr2 = sympify('y + 1')
>>> expr3 = expr1 * expr2
>>> expr2
1 + y
>>> expr3
(1 + x)(1 + y)
>>> expand(expr3)
1 + y + x + x⋅y

解方程

使用solve(),其总是假设表达式等于0:

>>> from sympy import Symbol, sympify, solve
>>> expr = sympify('x**2 + 2*x + 1')
>>> expr2
1 + 2⋅x + x 
>>> solve(expr)
[-1]
>>> expr = sympify('(x + 1)*(y -1)')
>>> solve(expr)
[{x: -1}, {y: 1}]

解二次方程
二次方程(Quadratic Equations)。以下方程有多个解:

>>> expr = sympify('x**2 + 5*x + 4')
>>> solve(expr)
[-4, -1]

复数方程式也可以解:

>>> x=Symbol('x')
>>> expr = x**2 + x + 1
>>> solve(expr)				# i表示虚数,是-1的平方根(imaginary)
⎡  √3⋅ⅈ   13⋅ⅈ   1⎤
⎢- ──── -, ──── - ─⎥
⎣   2     2   2     2>>> solve(expr, dict=True)	# 字典形式
⎡⎧     √3⋅ⅈ   1⎫  ⎧   √3⋅ⅈ   1⎫⎤
⎢⎨x: - ──── - ─⎬, ⎨x: ──── - ─⎬⎥
⎣⎩      2     2⎭  ⎩    2     2⎭⎦

也可以只求解一个变量,这个变量用其余的变量表示,注意solve()中多指定了一个参数:

>>> a=Symbol('a')
>>> b=Symbol('b')
>>> x=Symbol('x')
>>> expr = a*x**2 + b*x + 1
>>> solve(expr, x)
⎡   __________       ⎛   __________    ⎞ ⎤
⎢  ╱  2              ⎜  ╱  2           ⎟ ⎥
⎢╲╱  b  - 4⋅a  - b  -⎝╲╱  b  - 4⋅a  + b⎠ ⎥
⎢─────────────────, ─────────────────────⎥
⎣       2⋅a                  2⋅a         ⎦

作者给了个运动方程式(equations of motion)的例子,其中a是加速度,t是时间, μ \mu μ是速度,s是距离:
s = μ t + 1 2 a t 2 s=\mu{t}+\frac{1}{2}at^2 s=μt+21at2
可以计算下距离一定时所需的时间。

解线性方程组

>>> x = Symbol('x')
>>> y = Symbol('y')
>>> expr1 = x + 3*y - 11
>>> expr2 = x - 2*y - 1
>>> solve((expr1, expr2))
{x: 5, y: 2}

以下是验算过程:

>>> sol = solve((expr1, expr2), dict=True)
>>> sol[0]
{x: 5, y: 2}
>>> sol[0][x]
5
>>> sol[0][y]
2
>>> expr1.subs({x:5, y:2})
0
>>> expr2.subs({x:5, y:2})
0

使用SYMPY绘图

在前面的章节,我们用matplotlib绘图,但必须指定x和y的值。而使用sympy绘图,只需给出公式就可以了。

>>> from sympy.plotting import plot
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> plot(x**2 + 2*x + 1)Plot object containing:                   
[0]: cartesian line: x**2 + 2*x + 1 for x over (-10.0, 10.0)
>>> plot((x**2 + 2*x + 1), (x, -100, 100))	# 可指定x的取值区间Plot object containing:                    
[0]: cartesian line: x**2 + 2*x + 1 for x over (-100.0, 100.0)

第一个输出如下:
在这里插入图片描述
指定标题与标签:

>>> plot(x**2 + 2*x + 1, title='A Line', xlabel='x', ylabel='2x+3')

不显示,仅存为文件:

>>> p = plot(x**2 + 2*x + 1, show = False)
>>> p.save('f.png')

绘制用户输入的表达式

  1. 用户输入的表达式有两个变量x和y,通过sympify()转换为符号表达式,
  2. 通过solve(表达式, y)得到x和y的关系
  3. 通过plot()绘图

绘制多个函数

>>> plot(x**2 + 2*x + 1, x**2 - 2*x + 1)

在这里插入图片描述

调用plot()时,默认程序会阻塞,直到图形关闭。以下是一种延后到show()调用时阻塞的方法:

>>> p=plot(x**2 + 2*x + 1, x**2 - 2*x + 1, show=False)
>>> pPlot object containing:                   
[0]: cartesian line: x**2 + 2*x + 1 for x over (-10.0, 10.0)
[1]: cartesian line: x**2 - 2*x + 1 for x over (-10.0, 10.0)
>>> p[0].line_color = 'r'	# 红色线
>>> p[1].line_color = 'b'	# 蓝色线
>>> p.legend = True
>>> p.show()

编程挑战

因式分解
用户输入表达式,然后做因式分解:

>>> x = Symbol('x')
>>> expr = x**3 + 3*x**2 + 3*x + 1
>>> factor(expr)3
(1 + x) 

二元一次方程绘图
代码:

from sympy import Symbol, sympify, solve
from sympy.plotting import plotexpr1 = input('Enter your first expression in terms of x and y: ')
expr2 = input('Enter your second expression in terms of x and y: ')sol1 = solve(expr1, 'y')	# solve()也可以接受字符串,不仅仅是符号表达式
sol2 = solve(expr2, 'y')p = plot(sol1[0], sol2[0], show=False)
p[0].line_color = 'r'	
p[1].line_color = 'b'
p.legend = True
p.show()

输出:

$ p3 eqplot.py
Enter your first expression in terms of x and y: y + 2*x + 1
Enter your second expression in terms of x and y: y - 2*x + 1

在这里插入图片描述
序列求和
∑ x = 1 10 1 x \displaystyle\sum_{x=1}^{10}\frac{1}{x} x=110x1

>>> from sympy import Symbol, summation, pprint
>>> x = Symbol('x')
>>> s = summation(1/x, (x, 1, 10))
>>> s
7381
────
2520

又如:
∑ n = 1 10 x n n \displaystyle\sum_{n=1}^{10}\frac{x^n}{n} n=110nxn

>>> x = Symbol('x')
>>> n = Symbol('n')
>>> s = summation(x**n/n, (n, 1, 10))
>>> s2    3    4    5    6    7    8    9    10x    x    x    x    x    x    x    x    x  
x + ── + ── + ── + ── + ── + ── + ── + ── + ───2    3    4    5    6    7    8    9     10
>>> s.subs({x:1})
7381
────
2520

单变量不等式
solve()也支持不等式的求解,支持的不等式类型包括多项式(polynomial),有理式(rational expression)。
先来看多项式。多项式中只有一个变量,只有加减乘操作,幂都是正数。

>>> from sympy import Poly, Symbol, solve_poly_inequality
>>> x = Symbol('x')
>>> ineq_obj = x**2 -4 > 0
>>> lhs = ineq_obj.lhs		# 提取不等式左边部分
>>> lhs2
-4 + x 
>>> p = Poly(lhs, x)
>>> p
Poly(x**2 - 4, x, domain='ZZ')
>>> rel = ineq_obj.rel_op	# 提取操作符
>>> rel
>
>>> solve_poly_inequality(p, rel)
[(-, -2), (2,)]

再来看有理式,也称为分式。有理式的分子和分母都是多项式。

>>> from sympy import Symbol, Poly, solve_rational_inequalities
>>> x = Symbol('x')
>>> ineq_obj = ((x-1)/(x+2)) > 0
>>> lhs = ineq_obj.lhs
>>> lhs
-1 + x
──────
2 + x 
>>> numer, denom = lhs.as_numer_denom()
>>> numer	# 分子(numerator)
-1 + x
>>> denom	# 分母(Denominator)
2 + x
>>> p1 = Poly(numer)
>>> p1
Poly(x - 1, x, domain='ZZ')
>>> p2 = Poly(denom)
>>> p2
Poly(x + 2, x, domain='ZZ')
>>> rel = ineq_obj.rel_op
>>> solve_rational_inequalities([[((p1, p2), rel)]])
(-, -2)(1,)

最后看一下其它类型的不等式,例如sin(x) - 0.6 > 0

>>> from sympy import Symbol, solve, solve_univariate_inequality, sin
>>> x = Symbol('x')
>>> ineq_obj = sin(x) - 0.6 > 0
>>> solve_univariate_inequality(ineq_obj, x, relational=False)
(0.643501108793284, π - 0.643501108793284)

is_polynomial()可以检测表达式是否为多项式。

>>> x = Symbol('x')
>>> expr = x**2 + 2*x + 1
>>> expr.is_polynomial()
True
>>> expr = sin(x)
>>> expr.is_polynomial()
False

is_rational_function()可判断表达式是否为有理式。
sympify()也可以将不等式字符串转换为表达式。

这篇关于Doing Math with Python读书笔记-第4章:Algebra and Symbolic Math with SymPy的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/677561

相关文章

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交