Python 轻量级定时任务调度:APScheduler

2024-02-04 06:52

本文主要是介绍Python 轻量级定时任务调度:APScheduler,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简述

APscheduler (Advanced Python Scheduler),作用为按指定的时间规则执行指定的作业。提供了基于日期date、固定时间间隔interval 、以及类似于Linux上的定时任务crontab类型的定时任务。该框架不仅可以添加、删除定时任务,还可以将任务存储到数据库中,实现任务的持久化。

pip install apscheduler

APScheduler 有四种组件及相关说明:
1) triggers(触发器):触发器包含调度逻辑,每一个作业有它自己的触发器,用于决定接下来哪一个作业会运行,除了他们自己初始化配置外,触发器完全是无状态的。
2)job stores(作业存储):用来存储被调度的作业,默认的作业存储器是简单地把作业任务保存在内存中,其它作业存储器可以将任务作业保存到各种数据库中,支持MongoDB、Redis、SQLAlchemy 存储方式。当对作业任务进行持久化存储的时候,作业的数据将被序列化,重新读取作业时在反序列化。
3) executors(执行器):执行器用来执行定时任务,只是将需要执行的任务放在新的线程或者线程池中运行。当作业任务完成时,执行器将会通知调度器。对于执行器,默认情况下选择ThreadPoolExecutor就可以了,但是如果涉及到一下特殊任务如比较消耗CPU的任务则可以选择ProcessPoolExecutor,当然根据根据实际需求可以同时使用两种执行器。
4) schedulers(调度器):调度器是将其它部分联系在一起,一般在应用程序中只有一个调度器,应用开发者不会直接操作触发器、任务存储以及执行器,相反调度器提供了处理的接口。通过调度器完成任务的存储以及执行器的配置操作,如可以添加。修改、移除任务作业。

APScheduler提供了多种调度器,可以根据具体需求来选择合适的调度器,常用的调度器有:

  • BlockingScheduler:适合于只在进程中运行单个任务的情况,通常在调度器是你唯一要运行的东西时使用。
  • BackgroundScheduler: 适合于要求任何在程序后台运行的情况,当希望调度器在应用后台执行时使用。
  • AsyncIOScheduler:适合于使用 asyncio 框架的情况
  • GeventScheduler: 适合于使用gevent框架的情况
  • TornadoScheduler: 适合于使用 Tornado 框架的应用
  • TwistedScheduler: 适合使用Twisted框架的应用
  • QtScheduler: 适合使用QT的情况

例子

定时执行函数test_job,每隔5秒钟执行一次

from apscheduler.schedulers.blocking import BlockingScheduler
import time
def test_job():print(time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))test_job()scheduler = BlockingScheduler()
scheduler.add_job(test_job,'interval',seconds=5,id='test_job')
scheduler.start()

每周星期一到星期五,下午13:00-19:00每分每4秒执行一次

import datetime
import time
from apscheduler.schedulers.blocking import BlockingScheduler
def job_function():print("Hello World" + " " + str(datetime.datetime.now()))
if __name__ == '__main__':print('start to do it')sched = BlockingScheduler()sched.add_job(job_function, 'cron', day_of_week='mon-fri', hour='13-19', minute="*", second="*/4") # 每4秒执行一次sched.start()

cron 触发器

详细说明

Job 作业

Job 是 APScheduler 最小执行单位。创建 Job 时指定执行的函数,函数中所需参数,Job 执行时的一些设置信息。

id:指定作业的唯一ID
name:指定作业的名字
trigger:apscheduler定义的触发器,用于确定Job的执行时间,根据设置的trigger规则,计算得到下次执行此job的时间, 满足时将会执行
executor:apscheduler定义的执行器,job创建时设置执行器的名字,根据字符串你名字到scheduler获取到执行此
job的 执行器,执行job指定的函数
max_instances:执行此job的最大实例数,executor执行job时,根据job的id来计算执行次数,根据设置的最大实例数
来确定是否可执行
next_run_time:Job下次的执行时间,创建Job时可以指定一个时间[datetime],不指定的话则默认根据trigger获取触
发时间
misfire_grace_time:Job的延迟执行时间,例如Job的计划执行时间是21:00:00,但因服务重启或其他原因导致 21:00:31才执行,如果设置此key为40,则该job会继续执行,否则将会丢弃此job
coalesce:Job是否合并执行,是一个bool值。例如scheduler停止20s后重启启动,而job的触发器设置为5s执行一次,因此此job错过了4个执行时间,如果设置为是,则会合并到一次执行,否则会逐个执行
func:Job执行的函数
args:Job执行函数需要的位置参数
kwargs:Job执行函数需要的关键字参数

Trigger 触发器

包含调度逻辑,每一个作业有它自己的触发器,用于决定接下来哪一个作业会运行。除了它们自己初始配置以外,触发器完全是无状态的【说人话就是,这个调度逻辑只能创建时设置,创建好后无法修改调度逻辑】。

APScheduler 有三种内建的 trigger:

  • date: 特定的时间点触发
  • interval: 固定时间间隔触发
  • cron: 在特定时间周期性地触发

Jobstore 作业存储

如果有保存作业状态的需求的话需要使用 Jobstore
如果你的应用在每次启动的时候都会重新创建作业,那么使用默认的作业存储器(MemoryJobStore)即可,但是如果你需要在调度器重启或者应用程序奔溃的情况下任然保留作业,你应该根据你的应用环境来选择具体的作业存储器。例如:使用Mongo或者SQLAlchemy JobStore (用于支持大多数RDBMS)。

Executor 执行器

Executor在scheduler中初始化,另外也可通过scheduler的add_executor动态添加Executor。
每个executor都会绑定一个alias,这个作为唯一标识绑定到Job,在实际执行时会根据Job绑定的executor。找到实际的执行器对象,然后根据执行器对象执行Job。

Executor的种类会根据不同的调度来选择,如果选择AsyncIO作为调度的库,那么选择AsyncIOExecutor,如果选择tornado作为调度的库,选择TornadoExecutor,如果选择启动进程作为调度,选择ThreadPoolExecutor或者ProcessPoolExecutor都可以。

Executor的选择需要根据实际的scheduler来选择不同的执行器。

处理作业的运行,它们通常通过在作业中提交制定的可调用对象到一个线程或者进城池来进行。当作业完成时,执行器将会通知调度器。

Scheduler 调度器

一般只有一个调度器。

Reference

  1. APScheduler 使用详解
  2. Python定时任务框架APScheduler详解
  3. APschedule定时任务

这篇关于Python 轻量级定时任务调度:APScheduler的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/676664

相关文章

Python中conda虚拟环境创建及使用小结

《Python中conda虚拟环境创建及使用小结》本文主要介绍了Python中conda虚拟环境创建及使用小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录0.前言1.Miniconda安装2.conda本地基本操作3.创建conda虚拟环境4.激活c

使用Python创建一个能够筛选文件的PDF合并工具

《使用Python创建一个能够筛选文件的PDF合并工具》这篇文章主要为大家详细介绍了如何使用Python创建一个能够筛选文件的PDF合并工具,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录背景主要功能全部代码代码解析1. 初始化 wx.Frame 窗口2. 创建工具栏3. 创建布局和界面控件4

一文详解如何在Python中使用Requests库

《一文详解如何在Python中使用Requests库》:本文主要介绍如何在Python中使用Requests库的相关资料,Requests库是Python中常用的第三方库,用于简化HTTP请求的发... 目录前言1. 安装Requests库2. 发起GET请求3. 发送带有查询参数的GET请求4. 发起PO

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Python进行PDF文件拆分的示例详解

《Python进行PDF文件拆分的示例详解》在日常生活中,我们常常会遇到大型的PDF文件,难以发送,将PDF拆分成多个小文件是一个实用的解决方案,下面我们就来看看如何使用Python实现PDF文件拆分... 目录使用工具将PDF按页数拆分将PDF的每一页拆分为单独的文件将PDF按指定页数拆分根据页码范围拆分

Python中常用的四种取整方式分享

《Python中常用的四种取整方式分享》在数据处理和数值计算中,取整操作是非常常见的需求,Python提供了多种取整方式,本文为大家整理了四种常用的方法,希望对大家有所帮助... 目录引言向零取整(Truncate)向下取整(Floor)向上取整(Ceil)四舍五入(Round)四种取整方式的对比综合示例应

python 3.8 的anaconda下载方法

《python3.8的anaconda下载方法》本文详细介绍了如何下载和安装带有Python3.8的Anaconda发行版,包括Anaconda简介、下载步骤、安装指南以及验证安装结果,此外,还介... 目录python3.8 版本的 Anaconda 下载与安装指南一、Anaconda 简介二、下载 An

Python自动化处理手机验证码

《Python自动化处理手机验证码》手机验证码是一种常见的身份验证手段,广泛应用于用户注册、登录、交易确认等场景,下面我们来看看如何使用Python自动化处理手机验证码吧... 目录一、获取手机验证码1.1 通过短信接收验证码1.2 使用第三方短信接收服务1.3 使用ADB读取手机短信1.4 通过API获取

python安装whl包并解决依赖关系的实现

《python安装whl包并解决依赖关系的实现》本文主要介绍了python安装whl包并解决依赖关系的实现,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、什么是whl文件?二、我们为什么需要使用whl文件来安装python库?三、我们应该去哪儿下

Python脚本实现图片文件批量命名

《Python脚本实现图片文件批量命名》这篇文章主要为大家详细介绍了一个用python第三方库pillow写的批量处理图片命名的脚本,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言源码批量处理图片尺寸脚本源码GUI界面源码打包成.exe可执行文件前言本文介绍一个用python第三方库pi