Image manipulation and processing using Numpy and Scipy

2024-02-04 01:32

本文主要是介绍Image manipulation and processing using Numpy and Scipy,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

看文档和别人的例子应该是学习的一个办法;

http://scipy-lectures.github.io/advanced/image_processing/


authors:Emmanuelle Gouillart, Gaël Varoquaux

This chapter addresses basic image manipulation and processing using the core scientific modules NumPy and SciPy. Some of the operations covered by this tutorial may be useful for other kinds of multidimensional array processing than image processing. In particular, the submodule scipy.ndimage provides functions operating on n-dimensional NumPy arrays.

See also

 

For more advanced image processing and image-specific routines, see the tutorial Scikit-image: image processing, dedicated to the skimagemodule.

Image = 2-D numerical array

(or 3-D: CT, MRI, 2D + time; 4-D, ...)

Here, image == Numpy array np.array

Tools used in this tutorial:

  • numpy: basic array manipulation

  • scipyscipy.ndimage submodule dedicated to image processing (n-dimensional images). Seehttp://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html

    >>>
    >>> from scipy import ndimage

Common tasks in image processing:

  • Input/Output, displaying images
  • Basic manipulations: cropping, flipping, rotating, ...
  • Image filtering: denoising, sharpening
  • Image segmentation: labeling pixels corresponding to different objects
  • Classification
  • Feature extraction
  • Registration
  • ...

More powerful and complete modules:

  • OpenCV (Python bindings)
  • CellProfiler
  • ITK with Python bindings
  • many more...

Chapters contents

  • Opening and writing to image files
  • Displaying images
  • Basic manipulations
    • Statistical information
    • Geometrical transformations
  • Image filtering
    • Blurring/smoothing
    • Sharpening
    • Denoising
    • Mathematical morphology
  • Feature extraction
    • Edge detection
    • Segmentation
  • Measuring objects properties: ndimage.measurements

2.6.1. Opening and writing to image files

Writing an array to a file:

from scipy import miscl = misc.lena()misc.imsave('lena.png', l) # uses the Image module (PIL)import matplotlib.pyplot as pltplt.imshow(l)plt.show()
../../_images/lena.png

Creating a numpy array from an image file:

>>>
>>> from scipy import misc>>> lena = misc.imread('lena.png')>>> type(lena)<type 'numpy.ndarray'>>>> lena.shape, lena.dtype((512, 512), dtype('uint8'))

dtype is uint8 for 8-bit images (0-255)

Opening raw files (camera, 3-D images)

>>>
>>> l.tofile('lena.raw') # Create raw file>>> lena_from_raw = np.fromfile('lena.raw', dtype=np.int64)>>> lena_from_raw.shape(262144,)>>> lena_from_raw.shape = (512, 512)>>> import os>>> os.remove('lena.raw')

Need to know the shape and dtype of the image (how to separate data bytes).

For large data, use np.memmap for memory mapping:

>>>
>>> lena_memmap = np.memmap('lena.raw', dtype=np.int64, shape=(512, 512))

(data are read from the file, and not loaded into memory)

Working on a list of image files

>>>
>>> for i in range(10):...     im = np.random.random_integers(0, 255, 10000).reshape((100, 100))...     misc.imsave('random_%02d.png' % i, im)>>> from glob import glob>>> filelist = glob('random*.png')>>> filelist.sort()

2.6.2. Displaying images

Use matplotlib and imshow to display an image inside a matplotlib figure:

>>>
>>> l = misc.lena()>>> import matplotlib.pyplot as plt>>> plt.imshow(l, cmap=plt.cm.gray)<matplotlib.image.AxesImage object at 0x3c7f710>

Increase contrast by setting min and max values:

>>>
>>> plt.imshow(l, cmap=plt.cm.gray, vmin=30, vmax=200)<matplotlib.image.AxesImage object at 0x33ef750>>>> # Remove axes and ticks>>> plt.axis('off')(-0.5, 511.5, 511.5, -0.5)

Draw contour lines:

>>>
>>> plt.contour(l, [60, 211])<matplotlib.contour.ContourSet instance at 0x33f8c20>
../../_images/plot_display_lena_1.png

[Python source code]

For fine inspection of intensity variations, use interpolation='nearest':

>>>
>>> plt.imshow(l[200:220, 200:220], cmap=plt.cm.gray)>>> plt.imshow(l[200:220, 200:220], cmap=plt.cm.gray, interpolation='nearest')
../../_images/plot_interpolation_lena_1.png

[Python source code]

3-D visualization: Mayavi

See 3D plotting with Mayavi.

  • Image plane widgets
  • Isosurfaces
  • ...

2.6.3. Basic manipulations

Images are arrays: use the whole numpy machinery.

../../_images/axis_convention.png
>>>
>>> lena = scipy.misc.lena()>>> lena[0, 40]166>>> # Slicing>>> lena[10:13, 20:23]array([[158, 156, 157],[157, 155, 155],[157, 157, 158]])>>> lena[100:120] = 255>>>>>> lx, ly = lena.shape>>> X, Y = np.ogrid[0:lx, 0:ly]>>> mask = (X - lx / 2) ** 2 + (Y - ly / 2) ** 2 > lx * ly / 4>>> # Masks>>> lena[mask] = 0>>> # Fancy indexing>>> lena[range(400), range(400)] = 255
../../_images/plot_numpy_array_1.png

[Python source code]

2.6.3.1. Statistical information

>>>
>>> lena = misc.lena()>>> lena.mean()124.04678344726562>>> lena.max(), lena.min()(245, 25)

np.histogram

Exercise

  • Open as an array the scikit-image logo (http://scikit-image.org/_static/scikits_image_logo.png), or an image that you have on your computer.
  • Crop a meaningful part of the image, for example the python circle in the logo.
  • Display the image array using matlplotlib. Change the interpolation method and zoom to see the difference.
  • Transform your image to greyscale
  • Increase the contrast of the image by changing its minimum and maximum values. Optional: use scipy.stats.scoreatpercentile (read the docstring!) to saturate 5% of the darkest pixels and 5% of the lightest pixels.
  • Save the array to two different file formats (png, jpg, tiff)
../../_images/scikits_image_logo.png

2.6.3.2. Geometrical transformations

>>>
>>> lena = misc.lena()>>> lx, ly = lena.shape>>> # Cropping>>> crop_lena = lena[lx / 4: - lx / 4, ly / 4: - ly / 4]>>> # up <-> down flip>>> flip_ud_lena = np.flipud(lena)>>> # rotation>>> rotate_lena = ndimage.rotate(lena, 45)>>> rotate_lena_noreshape = ndimage.rotate(lena, 45, reshape=False)
../../_images/plot_geom_lena_1.png

[Python source code]

2.6.4. Image filtering

Local filters: replace the value of pixels by a function of the values of neighboring pixels.

Neighbourhood: square (choose size), disk, or more complicated structuring element.

../../_images/kernels.png

2.6.4.1. Blurring/smoothing

Gaussian filter from scipy.ndimage:

>>>
>>> from scipy import misc>>> lena = misc.lena()>>> blurred_lena = ndimage.gaussian_filter(lena, sigma=3)>>> very_blurred = ndimage.gaussian_filter(lena, sigma=5)

Uniform filter

>>>
>>> local_mean = ndimage.uniform_filter(lena, size=11)
../../_images/plot_blur_1.png

[Python source code]

2.6.4.2. Sharpening

Sharpen a blurred image:

>>>
>>> from scipy import misc>>> lena = misc.lena()>>> blurred_l = ndimage.gaussian_filter(lena, 3)

increase the weight of edges by adding an approximation of the Laplacian:

>>>
>>> filter_blurred_l = ndimage.gaussian_filter(blurred_l, 1)>>> alpha = 30>>> sharpened = blurred_l + alpha * (blurred_l - filter_blurred_l)
../../_images/plot_sharpen_1.png

[Python source code]

2.6.4.3. Denoising

Noisy lena:

>>>
>>> from scipy import misc>>> l = misc.lena()>>> l = l[230:310, 210:350]>>> noisy = l + 0.4 * l.std() * np.random.random(l.shape)

Gaussian filter smoothes the noise out... and the edges as well:

>>>
>>> gauss_denoised = ndimage.gaussian_filter(noisy, 2)

Most local linear isotropic filters blur the image (ndimage.uniform_filter)

median filter preserves better the edges:

>>>
>>> med_denoised = ndimage.median_filter(noisy, 3)
../../_images/plot_lena_denoise_1.png

[Python source code]

Median filter: better result for straight boundaries (low curvature):

>>>
>>> im = np.zeros((20, 20))>>> im[5:-5, 5:-5] = 1>>> im = ndimage.distance_transform_bf(im)>>> im_noise = im + 0.2 * np.random.randn(*im.shape)>>> im_med = ndimage.median_filter(im_noise, 3)
../../_images/plot_denoising_1.png

[Python source code]

Other rank filter: ndimage.maximum_filterndimage.percentile_filter

Other local non-linear filters: Wiener (scipy.signal.wiener), etc.

Non-local filters

Exercise: denoising

  • Create a binary image (of 0s and 1s) with several objects (circles, ellipses, squares, or random shapes).
  • Add some noise (e.g., 20% of noise)
  • Try two different denoising methods for denoising the image: gaussian filtering and median filtering.
  • Compare the histograms of the two different denoised images. Which one is the closest to the histogram of the original (noise-free) image?

2.6.4.4. Mathematical morphology

See http://en.wikipedia.org/wiki/Mathematical_morphology

Probe an image with a simple shape (a structuring element), and modify this image according to how the shape locally fits or misses the image.

Structuring element:

>>>
>>> el = ndimage.generate_binary_structure(2, 1)>>> elarray([[False,  True, False],       [ True,  True,  True],       [False,  True, False]], dtype=bool)>>> el.astype(np.int)array([[0, 1, 0],       [1, 1, 1],       [0, 1, 0]])
../../_images/diamond_kernel.png

Erosion = minimum filter. Replace the value of a pixel by the minimal value covered by the structuring element.:

>>>
>>> a = np.zeros((7,7), dtype=np.int)>>> a[1:6, 2:5] = 1>>> aarray([[0, 0, 0, 0, 0, 0, 0],       [0, 0, 1, 1, 1, 0, 0],       [0, 0, 1, 1, 1, 0, 0],       [0, 0, 1, 1, 1, 0, 0],       [0, 0, 1, 1, 1, 0, 0],       [0, 0, 1, 1, 1, 0, 0],       [0, 0, 0, 0, 0, 0, 0]])>>> ndimage.binary_erosion(a).astype(a.dtype)array([[0, 0, 0, 0, 0, 0, 0],       [0, 0, 0, 0, 0, 0, 0],       [0, 0, 0, 1, 0, 0, 0],       [0, 0, 0, 1, 0, 0, 0],       [0, 0, 0, 1, 0, 0, 0],       [0, 0, 0, 0, 0, 0, 0],       [0, 0, 0, 0, 0, 0, 0]])>>> #Erosion removes objects smaller than the structure>>> ndimage.binary_erosion(a, structure=np.ones((5,5))).astype(a.dtype)array([[0, 0, 0, 0, 0, 0, 0],       [0, 0, 0, 0, 0, 0, 0],       [0, 0, 0, 0, 0, 0, 0],       [0, 0, 0, 0, 0, 0, 0],       [0, 0, 0, 0, 0, 0, 0],       [0, 0, 0, 0, 0, 0, 0],       [0, 0, 0, 0, 0, 0, 0]])
../../_images/morpho_mat.png

Dilation: maximum filter:

>>>
>>> a = np.zeros((5, 5))>>> a[2, 2] = 1>>> aarray([[ 0.,  0.,  0.,  0.,  0.],       [ 0.,  0.,  0.,  0.,  0.],       [ 0.,  0.,  1.,  0.,  0.],       [ 0.,  0.,  0.,  0.,  0.],       [ 0.,  0.,  0.,  0.,  0.]])>>> ndimage.binary_dilation(a).astype(a.dtype)array([[ 0.,  0.,  0.,  0.,  0.],       [ 0.,  0.,  1.,  0.,  0.],       [ 0.,  1.,  1.,  1.,  0.],       [ 0.,  0.,  1.,  0.,  0.],       [ 0.,  0.,  0.,  0.,  0.]])

Also works for grey-valued images:

>>>
>>> np.random.seed(2)>>> x, y = (63*np.random.random((2, 8))).astype(np.int)>>> im[x, y] = np.arange(8)>>> bigger_points = ndimage.grey_dilation(im, size=(5, 5), structure=np.ones((5, 5)))>>> square = np.zeros((16, 16))>>> square[4:-4, 4:-4] = 1>>> dist = ndimage.distance_transform_bf(square)>>> dilate_dist = ndimage.grey_dilation(dist, size=(3, 3), \...         structure=np.ones((3, 3)))
../../_images/plot_greyscale_dilation_1.png

[Python source code]

Opening: erosion + dilation:

>>>
>>> a = np.zeros((5,5), dtype=np.int)>>> a[1:4, 1:4] = 1; a[4, 4] = 1>>> aarray([[0, 0, 0, 0, 0],       [0, 1, 1, 1, 0],       [0, 1, 1, 1, 0],       [0, 1, 1, 1, 0],       [0, 0, 0, 0, 1]])>>> # Opening removes small objects>>> ndimage.binary_opening(a, structure=np.ones((3,3))).astype(np.int)array([[0, 0, 0, 0, 0],       [0, 1, 1, 1, 0],       [0, 1, 1, 1, 0],       [0, 1, 1, 1, 0],       [0, 0, 0, 0, 0]])>>> # Opening can also smooth corners>>> ndimage.binary_opening(a).astype(np.int)array([[0, 0, 0, 0, 0],       [0, 0, 1, 0, 0],       [0, 1, 1, 1, 0],       [0, 0, 1, 0, 0],       [0, 0, 0, 0, 0]])

Application: remove noise:

>>>
>>> square = np.zeros((32, 32))>>> square[10:-10, 10:-10] = 1>>> np.random.seed(2)>>> x, y = (32*np.random.random((2, 20))).astype(np.int)>>> square[x, y] = 1>>> open_square = ndimage.binary_opening(square)>>> eroded_square = ndimage.binary_erosion(square)>>> reconstruction = ndimage.binary_propagation(eroded_square, mask=square)
../../_images/plot_propagation_1.png

[Python source code]

Closing: dilation + erosion

Many other mathematical morphology operations: hit and miss transform, tophat, etc.

2.6.5. Feature extraction

2.6.5.1. Edge detection

Synthetic data:

>>>
>>> im = np.zeros((256, 256))>>> im[64:-64, 64:-64] = 1>>>>>> im = ndimage.rotate(im, 15, mode='constant')>>> im = ndimage.gaussian_filter(im, 8)

Use a gradient operator (Sobel) to find high intensity variations:

>>>
>>> sx = ndimage.sobel(im, axis=0, mode='constant')>>> sy = ndimage.sobel(im, axis=1, mode='constant')>>> sob = np.hypot(sx, sy)
../../_images/plot_find_edges_1.png

[Python source code]

2.6.5.2. Segmentation

  • Histogram-based segmentation (no spatial information)
>>>
>>> n = 10>>> l = 256>>> im = np.zeros((l, l))>>> np.random.seed(1)>>> points = l*np.random.random((2, n**2))>>> im[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1>>> im = ndimage.gaussian_filter(im, sigma=l/(4.*n))>>> mask = (im > im.mean()).astype(np.float)>>> mask += 0.1 * im>>> img = mask + 0.2*np.random.randn(*mask.shape)>>> hist, bin_edges = np.histogram(img, bins=60)>>> bin_centers = 0.5*(bin_edges[:-1] + bin_edges[1:])>>> binary_img = img > 0.5
../../_images/plot_histo_segmentation_1.png

[Python source code]

Use mathematical morphology to clean up the result:

>>>
>>> # Remove small white regions>>> open_img = ndimage.binary_opening(binary_img)>>> # Remove small black hole>>> close_img = ndimage.binary_closing(open_img)
../../_images/plot_clean_morpho_1.png

[Python source code]

Exercise

Check that reconstruction operations (erosion + propagation) produce a better result than opening/closing:

>>>
>>> eroded_img = ndimage.binary_erosion(binary_img)>>> reconstruct_img = ndimage.binary_propagation(eroded_img, mask=binary_img)>>> tmp = np.logical_not(reconstruct_img)>>> eroded_tmp = ndimage.binary_erosion(tmp)>>> reconstruct_final = np.logical_not(ndimage.binary_propagation(eroded_tmp, mask=tmp))>>> np.abs(mask - close_img).mean()0.014678955078125>>> np.abs(mask - reconstruct_final).mean()0.0042572021484375

Exercise

Check how a first denoising step (e.g. with a median filter) modifies the histogram, and check that the resulting histogram-based segmentation is more accurate.

See also

 

More advanced segmentation algorithms are found in the scikit-image: see Scikit-image: image processing.

See also

 

Other Scientific Packages provide algorithms that can be useful for image processing. In this example, we use the spectral clustering function of the scikit-learn in order to segment glued objects.

>>>
>>> from sklearn.feature_extraction import image>>> from sklearn.cluster import spectral_clustering>>> l = 100>>> x, y = np.indices((l, l))>>> center1 = (28, 24)>>> center2 = (40, 50)>>> center3 = (67, 58)>>> center4 = (24, 70)>>> radius1, radius2, radius3, radius4 = 16, 14, 15, 14>>> circle1 = (x - center1[0])**2 + (y - center1[1])**2 < radius1**2>>> circle2 = (x - center2[0])**2 + (y - center2[1])**2 < radius2**2>>> circle3 = (x - center3[0])**2 + (y - center3[1])**2 < radius3**2>>> circle4 = (x - center4[0])**2 + (y - center4[1])**2 < radius4**2>>> # 4 circles>>> img = circle1 + circle2 + circle3 + circle4>>> mask = img.astype(bool)>>> img = img.astype(float)>>> img += 1 + 0.2*np.random.randn(*img.shape)>>> # Convert the image into a graph with the value of the gradient on>>> # the edges.>>> graph = image.img_to_graph(img, mask=mask)>>> # Take a decreasing function of the gradient: we take it weakly>>> # dependant from the gradient the segmentation is close to a voronoi>>> graph.data = np.exp(-graph.data/graph.data.std())>>> labels = spectral_clustering(graph, k=4, mode='arpack')>>> label_im = -np.ones(mask.shape)>>> label_im[mask] = labels
../../_images/image_spectral_clustering.png

2.6.6. Measuring objects properties:ndimage.measurements

Synthetic data:

>>>
>>> n = 10>>> l = 256>>> im = np.zeros((l, l))>>> points = l*np.random.random((2, n**2))>>> im[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1>>> im = ndimage.gaussian_filter(im, sigma=l/(4.*n))>>> mask = im > im.mean()
  • Analysis of connected components

Label connected components: ndimage.label:

>>>
>>> label_im, nb_labels = ndimage.label(mask)>>> nb_labels # how many regions?23>>> plt.imshow(label_im)        <matplotlib.image.AxesImage object at ...>
../../_images/plot_synthetic_data_1.png

[Python source code]

Compute size, mean_value, etc. of each region:

>>>
>>> sizes = ndimage.sum(mask, label_im, range(nb_labels + 1))>>> mean_vals = ndimage.sum(im, label_im, range(1, nb_labels + 1))

Clean up small connect components:

>>>
>>> mask_size = sizes < 1000>>> remove_pixel = mask_size[label_im]>>> remove_pixel.shape(256, 256)>>> label_im[remove_pixel] = 0>>> plt.imshow(label_im)        <matplotlib.image.AxesImage object at ...>

Now reassign labels with np.searchsorted:

>>>
>>> labels = np.unique(label_im)>>> label_im = np.searchsorted(labels, label_im)
../../_images/plot_measure_data_1.png

[Python source code]

Find region of interest enclosing object:

>>>
>>> slice_x, slice_y = ndimage.find_objects(label_im==4)[0]>>> roi = im[slice_x, slice_y]>>> plt.imshow(roi)     <matplotlib.image.AxesImage object at ...>
../../_images/plot_find_object_1.png

[Python source code]

Other spatial measures: ndimage.center_of_massndimage.maximum_position, etc.

Can be used outside the limited scope of segmentation applications.

Example: block mean:

>>>
>>> from scipy import misc>>> l = misc.lena()>>> sx, sy = l.shape>>> X, Y = np.ogrid[0:sx, 0:sy]>>> regions = sy/6 * (X/4) + Y/6  # note that we use broadcasting>>> block_mean = ndimage.mean(l, labels=regions, index=np.arange(1,...     regions.max() +1))>>> block_mean.shape = (sx/4, sy/6)
../../_images/plot_block_mean_1.png

[Python source code]

When regions are regular blocks, it is more efficient to use stride tricks (Example: fake dimensions with strides).

Non-regularly-spaced blocks: radial mean:

>>>
>>> sx, sy = l.shape>>> X, Y = np.ogrid[0:sx, 0:sy]>>> r = np.hypot(X - sx/2, Y - sy/2)>>> rbin = (20* r/r.max()).astype(np.int)>>> radial_mean = ndimage.mean(l, labels=rbin, index=np.arange(1, rbin.max() +1))
../../_images/plot_radial_mean_1.png

[Python source code]

  • Other measures

Correlation function, Fourier/wavelet spectrum, etc.

One example with mathematical morphology: granulometry(http://en.wikipedia.org/wiki/Granulometry_%28morphology%29)

>>>
>>> def disk_structure(n):...     struct = np.zeros((2 * n + 1, 2 * n + 1))...     x, y = np.indices((2 * n + 1, 2 * n + 1))...     mask = (x - n)**2 + (y - n)**2 <= n**2...     struct[mask] = 1...     return struct.astype(np.bool)...>>>>>> def granulometry(data, sizes=None):...     s = max(data.shape)...     if sizes == None:...         sizes = range(1, s/2, 2)...     granulo = [ndimage.binary_opening(data, \...         structure=disk_structure(n)).sum() for n in sizes]...     return granulo...>>>>>> np.random.seed(1)>>> n = 10>>> l = 256>>> im = np.zeros((l, l))>>> points = l*np.random.random((2, n**2))>>> im[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1>>> im = ndimage.gaussian_filter(im, sigma=l/(4.*n))>>>>>> mask = im > im.mean()>>>>>> granulo = granulometry(mask, sizes=np.arange(2, 19, 4))
../../_images/plot_granulo_1.png

这篇关于Image manipulation and processing using Numpy and Scipy的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/676013

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

lvgl8.3.6 控件垂直布局 label控件在image控件的下方显示

在使用 LVGL 8.3.6 创建一个垂直布局,其中 label 控件位于 image 控件下方,你可以使用 lv_obj_set_flex_flow 来设置布局为垂直,并确保 label 控件在 image 控件后添加。这里是如何步骤性地实现它的一个基本示例: 创建父容器:首先创建一个容器对象,该对象将作为布局的基础。设置容器为垂直布局:使用 lv_obj_set_flex_flow 设置容器

2024年 Biomedical Signal Processing and Control 期刊投稿经验最新分享

期刊介绍 《Biomedical Signal Processing and Control 》期刊旨在为临床医学和生物科学中信号和图像的测量和分析研究提供一个跨学科的国际论坛。重点放在处理在临床诊断,患者监测和管理中使用的方法和设备的实际,应用为主导的研究的贡献。 生物医学信号处理和控制反映了这些方法在工程和临床科学的界面上被使用和发展的主要领域。期刊的范围包括相关的评论论文(review p

python科学计算:NumPy 线性代数与矩阵操作

1 NumPy 中的矩阵与数组 在 NumPy 中,矩阵实际上是一种特殊的二维数组,因此几乎所有数组的操作都可以应用到矩阵上。不过,矩阵运算与一般的数组运算存在一定的区别,尤其是在点积、乘法等操作中。 1.1 创建矩阵 矩阵可以通过 NumPy 的 array() 函数创建。矩阵的形状可以通过 shape 属性来访问。 import numpy as np# 创建一个 2x3 矩阵mat

探索Python的数学魔法:Numpy库的神秘力量

文章目录 探索Python的数学魔法:Numpy库的神秘力量背景:为什么选择Numpy?Numpy是什么?如何安装Numpy?五个简单的库函数使用方法场景应用常见Bug及解决方案总结 探索Python的数学魔法:Numpy库的神秘力量 背景:为什么选择Numpy? 在Python的世界中,数据处理和科学计算是不可或缺的一部分。但原生Python在处理大规模数据时可能会显

Numpy random.random()函数补充

np.random.random() np.random.random()的作用是生成指定形状的均匀分布的值为[0,1)的随机数 参数为size,也就是用于指定的形状大小 import numpy as npprint(np.random.random(size=(2, 2)))# [[0.19671797 0.85492315]# [0.99609539 0.66437246]]

解决RuntimeError: Numpy is not available

运行项目时,遇到RuntimeError: Numpy is not available 这是因为Numpy 版本太高,将现有Numpy卸载 pip uninstall numpy 安装numpy=1.26.4,解决此问题 pip install numpy=1.26.4 -i https://pypi.tuna.tsinghua.edu.cn/simple

6.科学计算模块Numpy(3)对ndarray数组的常用操作

引言 众所周知,numpy能作为python中最受欢迎的数据处理模块,脱离不了它最核心的部件——ndarray数组。那么,我们今天就来了解一下numpy中对ndarray的常用操作。 通过阅读本篇博客你可以: 1.掌握ndarray数组的切片和copy 2.学会如何改变ndarray的数组维度 3.掌握数组的拼接 一、ndarray数组的切片和copy 1.ndarray数组的切片

IMAGE LIST

   CImageList就是一个容器,用来存储图片资源,方便这些资源被CListBox,CComboBox,CComboBoxEx,CTabCtrl以及CTreeCtrl,CListCtrl等使用。      要使用CImgeList首先要使用它的create函数:      一般用的比较多的是这一个函数,当然,它还有很多重载,自己可以去翻阅msdn.       BOOL