6.科学计算模块Numpy(3)对ndarray数组的常用操作

2024-09-06 23:04

本文主要是介绍6.科学计算模块Numpy(3)对ndarray数组的常用操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

众所周知,numpy能作为python中最受欢迎的数据处理模块,脱离不了它最核心的部件——ndarray数组。那么,我们今天就来了解一下numpy中对ndarray的常用操作。

通过阅读本篇博客你可以:

1.掌握ndarray数组的切片和copy

2.学会如何改变ndarray的数组维度

3.掌握数组的拼接

一、ndarray数组的切片和copy

1.ndarray数组的切片

ndarray对象的内容可以通过索引或切片来访问和修改,与Python中的list的切片操作一样。ndarray数组可以基于0-n的下标进行索引,并设置start,stop,step参数,从原数组中切割出一个新数组。

代码示例如下:

import numpy as np# 一维数组切片和索引的使用
x = np.arange(10)
print(x)  # [0 1 2 3 4 5 6 7 8 9]
y = x[2:9:2]
print(y)  # [2 4 6 8]
z = x[2:]
print(z)  # [2 3 4 5 6 7 8 9]

2.copy()

numpy.copy()可以用来复制ndarray数组。这个时候就有人要问了:“我们直接用切片或者说直接赋值给一个新变量来获取原数组不也同样可以做到复制的效果吗?”

这就是我们要讲的copy()普通切片赋值操作的区别。我们直接看下面的代码示例

import numpy as np# 直接切片赋值
arr = np.arange(10)
temp = arr[:3]
temp[0] = 100
print(arr)  # [100   1   2   3   4   5   6   7   8   9]# copy()复制
arr = np.arange(10)
temp = np.copy(arr[:3])
temp[0] = 100
print(arr)  # [0 1 2 3 4 5 6 7 8 9]

从上述的代码我们能看出来,直接切片赋值得到的temp变量,在改变了0索引之后,原数组arr也改变了0索引的值。而copy()复制得到的temp变量,在改变了0索引之后,原数组arr并没有改变0索引的值。这是由于直接切片赋值得到的temp变量与原数组arr共享同一块内存,属于浅拷贝。而copy()复制的temp变量是一个新的数组,属于深拷贝

结论:

①直接切片赋值对切片的修改会影响原始数组

②copy()复制对副本的修改不会影响原始数组

二、ndarray数组的维度改变

处理数组的一项重要工作就是改变数组的维度,包含提升数组的维度和降低数组的维度。numpy中封装了大量的方法用来改变数组的维度。

1.reshape()

使用numpy.reshape()函数,你可以将一个数组的形状转变为另一个形状,而不改变数组中的数据。

代码示例如下:

import numpy as np# 将一维数组改为 2 * 5 的二维数组
arr = np.arange(10)
res = arr.reshape(2, 5)
print(res)
"""[[0 1 2 3 4][5 6 7 8 9]]
"""

2.ravel()

numpy.ravel()可以将多维ndarray数组转换成一维数组。

代码示例如下:

import numpy as np# 创建一个二维数组
arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr)
"""[[1 2 3][4 5 6]]
"""
# 使用 ravel() 展平数组
flattened_arr = arr.ravel()
print(flattened_arr)  # [1 2 3 4 5 6]

3.flatten()

numpy.flatten()函数同numpy.ravel()一样可以将多维数组展平为一维数组。但是numpy.flatten()会返回一个展平后的副本,如果修改副本不会影响原数组。但numpy.ravel()是返回一个视图,修改展平后的视图会影响到原数组。

代码示例如下:

import numpy as np# 创建一个二维数组
arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr)
"""[[1 2 3][4 5 6]]
"""# 使用 flatten() 展平数组
flattened_arr = arr.flatten()
print(flattened_arr)  # [1 2 3 4 5 6]

三、ndarray数组的拼接

1.水平数组的组合

hstack()

numpy.hstack()函数用于多维数组的水平拼接,在拼接数组时沿着第一个轴(即横轴)进行操作,因此适用于二维数组的列拼接,也可以用于更高维度数组的横向拼接。

代码示例如下:

import numpy as np# 创建两个二维数组
arr1 = np.array([[1, 2, 3], [4, 5, 6]])
arr2 = np.array([[7, 8, 9], [10, 11, 12]])# 使用 hstack() 进行水平拼接
result = np.hstack((arr1, arr2))
print(result)
"""[[ 1  2  3  7  8  9][ 4  5  6 10 11 12]]
"""

2.垂直数组的组合

vstack()

numpy.vstack()函数可以将多个数组沿着垂直方向拼接,在拼接数组时沿着第二个轴(即纵轴)进行操作,因此适用于二维数组的行拼接,也可以用于更高维度数组的纵向拼接。

代码示例如下:

import numpy as np# 创建两个二维数组
arr1 = np.array([[1, 2, 3], [4, 5, 6]])
arr2 = np.array([[7, 8, 9], [10, 11, 12]])# 使用 vstack() 进行垂直拼接
result = np.vstack((arr1, arr2))
print(result)
"""[[ 1  2  3][ 4  5  6][ 7  8  9][10 11 12]]
"""

3.通用的数组的拼接

concatenate()

import numpy as np
np.concatenate((a0,a1,...,an),axis)

numpy.concatenate()函数可用于水平组合也可用于垂直组合。具体使用哪个方向取决于参数axis。如果参数axis = 0,则是垂直拼接;如果参数axis = 1,则是水平拼接。

代码示例如下:

import numpy as np# 创建三个二维数组
arr1 = np.array([[1, 2, 3], [4, 5, 6]])
arr2 = np.array([[7, 8, 9], [10, 11, 12]])
arr3 = np.array([[13, 14, 15], [16, 17, 18]])# 沿着第一个轴(纵向)拼接
result_axis0 = np.concatenate((arr1, arr2, arr3), axis=0)
print(result_axis0)
"""[[ 1  2  3][ 4  5  6][ 7  8  9][10 11 12][13 14 15][16 17 18]]
"""# 沿着第二个轴(横向)拼接
result_axis1 = np.concatenate((arr1, arr2, arr3), axis=1)
print(result_axis1)
"""[[ 1  2  3  7  8  9 13 14 15][ 4  5  6 10 11 12 16 17 18]]
"""

总结 

本章博客介绍了numpy模块中多维数组的切片、维度的改变以及不同的拼接方法。希望可以对大家起到作用,谢谢。


关注我,内容持续更新(后续内容在作者专栏《从零基础到AI算法工程师》)!!!

这篇关于6.科学计算模块Numpy(3)对ndarray数组的常用操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143365

相关文章

Node.js net模块的使用示例

《Node.jsnet模块的使用示例》本文主要介绍了Node.jsnet模块的使用示例,net模块支持TCP通信,处理TCP连接和数据传输,具有一定的参考价值,感兴趣的可以了解一下... 目录简介引入 net 模块核心概念TCP (传输控制协议)Socket服务器TCP 服务器创建基本服务器服务器配置选项服

Python中常用的四种取整方式分享

《Python中常用的四种取整方式分享》在数据处理和数值计算中,取整操作是非常常见的需求,Python提供了多种取整方式,本文为大家整理了四种常用的方法,希望对大家有所帮助... 目录引言向零取整(Truncate)向下取整(Floor)向上取整(Ceil)四舍五入(Round)四种取整方式的对比综合示例应

C++一个数组赋值给另一个数组方式

《C++一个数组赋值给另一个数组方式》文章介绍了三种在C++中将一个数组赋值给另一个数组的方法:使用循环逐个元素赋值、使用标准库函数std::copy或std::memcpy以及使用标准库容器,每种方... 目录C++一个数组赋值给另一个数组循环遍历赋值使用标准库中的函数 std::copy 或 std::

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操