6.科学计算模块Numpy(3)对ndarray数组的常用操作

2024-09-06 23:04

本文主要是介绍6.科学计算模块Numpy(3)对ndarray数组的常用操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

众所周知,numpy能作为python中最受欢迎的数据处理模块,脱离不了它最核心的部件——ndarray数组。那么,我们今天就来了解一下numpy中对ndarray的常用操作。

通过阅读本篇博客你可以:

1.掌握ndarray数组的切片和copy

2.学会如何改变ndarray的数组维度

3.掌握数组的拼接

一、ndarray数组的切片和copy

1.ndarray数组的切片

ndarray对象的内容可以通过索引或切片来访问和修改,与Python中的list的切片操作一样。ndarray数组可以基于0-n的下标进行索引,并设置start,stop,step参数,从原数组中切割出一个新数组。

代码示例如下:

import numpy as np# 一维数组切片和索引的使用
x = np.arange(10)
print(x)  # [0 1 2 3 4 5 6 7 8 9]
y = x[2:9:2]
print(y)  # [2 4 6 8]
z = x[2:]
print(z)  # [2 3 4 5 6 7 8 9]

2.copy()

numpy.copy()可以用来复制ndarray数组。这个时候就有人要问了:“我们直接用切片或者说直接赋值给一个新变量来获取原数组不也同样可以做到复制的效果吗?”

这就是我们要讲的copy()普通切片赋值操作的区别。我们直接看下面的代码示例

import numpy as np# 直接切片赋值
arr = np.arange(10)
temp = arr[:3]
temp[0] = 100
print(arr)  # [100   1   2   3   4   5   6   7   8   9]# copy()复制
arr = np.arange(10)
temp = np.copy(arr[:3])
temp[0] = 100
print(arr)  # [0 1 2 3 4 5 6 7 8 9]

从上述的代码我们能看出来,直接切片赋值得到的temp变量,在改变了0索引之后,原数组arr也改变了0索引的值。而copy()复制得到的temp变量,在改变了0索引之后,原数组arr并没有改变0索引的值。这是由于直接切片赋值得到的temp变量与原数组arr共享同一块内存,属于浅拷贝。而copy()复制的temp变量是一个新的数组,属于深拷贝

结论:

①直接切片赋值对切片的修改会影响原始数组

②copy()复制对副本的修改不会影响原始数组

二、ndarray数组的维度改变

处理数组的一项重要工作就是改变数组的维度,包含提升数组的维度和降低数组的维度。numpy中封装了大量的方法用来改变数组的维度。

1.reshape()

使用numpy.reshape()函数,你可以将一个数组的形状转变为另一个形状,而不改变数组中的数据。

代码示例如下:

import numpy as np# 将一维数组改为 2 * 5 的二维数组
arr = np.arange(10)
res = arr.reshape(2, 5)
print(res)
"""[[0 1 2 3 4][5 6 7 8 9]]
"""

2.ravel()

numpy.ravel()可以将多维ndarray数组转换成一维数组。

代码示例如下:

import numpy as np# 创建一个二维数组
arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr)
"""[[1 2 3][4 5 6]]
"""
# 使用 ravel() 展平数组
flattened_arr = arr.ravel()
print(flattened_arr)  # [1 2 3 4 5 6]

3.flatten()

numpy.flatten()函数同numpy.ravel()一样可以将多维数组展平为一维数组。但是numpy.flatten()会返回一个展平后的副本,如果修改副本不会影响原数组。但numpy.ravel()是返回一个视图,修改展平后的视图会影响到原数组。

代码示例如下:

import numpy as np# 创建一个二维数组
arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr)
"""[[1 2 3][4 5 6]]
"""# 使用 flatten() 展平数组
flattened_arr = arr.flatten()
print(flattened_arr)  # [1 2 3 4 5 6]

三、ndarray数组的拼接

1.水平数组的组合

hstack()

numpy.hstack()函数用于多维数组的水平拼接,在拼接数组时沿着第一个轴(即横轴)进行操作,因此适用于二维数组的列拼接,也可以用于更高维度数组的横向拼接。

代码示例如下:

import numpy as np# 创建两个二维数组
arr1 = np.array([[1, 2, 3], [4, 5, 6]])
arr2 = np.array([[7, 8, 9], [10, 11, 12]])# 使用 hstack() 进行水平拼接
result = np.hstack((arr1, arr2))
print(result)
"""[[ 1  2  3  7  8  9][ 4  5  6 10 11 12]]
"""

2.垂直数组的组合

vstack()

numpy.vstack()函数可以将多个数组沿着垂直方向拼接,在拼接数组时沿着第二个轴(即纵轴)进行操作,因此适用于二维数组的行拼接,也可以用于更高维度数组的纵向拼接。

代码示例如下:

import numpy as np# 创建两个二维数组
arr1 = np.array([[1, 2, 3], [4, 5, 6]])
arr2 = np.array([[7, 8, 9], [10, 11, 12]])# 使用 vstack() 进行垂直拼接
result = np.vstack((arr1, arr2))
print(result)
"""[[ 1  2  3][ 4  5  6][ 7  8  9][10 11 12]]
"""

3.通用的数组的拼接

concatenate()

import numpy as np
np.concatenate((a0,a1,...,an),axis)

numpy.concatenate()函数可用于水平组合也可用于垂直组合。具体使用哪个方向取决于参数axis。如果参数axis = 0,则是垂直拼接;如果参数axis = 1,则是水平拼接。

代码示例如下:

import numpy as np# 创建三个二维数组
arr1 = np.array([[1, 2, 3], [4, 5, 6]])
arr2 = np.array([[7, 8, 9], [10, 11, 12]])
arr3 = np.array([[13, 14, 15], [16, 17, 18]])# 沿着第一个轴(纵向)拼接
result_axis0 = np.concatenate((arr1, arr2, arr3), axis=0)
print(result_axis0)
"""[[ 1  2  3][ 4  5  6][ 7  8  9][10 11 12][13 14 15][16 17 18]]
"""# 沿着第二个轴(横向)拼接
result_axis1 = np.concatenate((arr1, arr2, arr3), axis=1)
print(result_axis1)
"""[[ 1  2  3  7  8  9 13 14 15][ 4  5  6 10 11 12 16 17 18]]
"""

总结 

本章博客介绍了numpy模块中多维数组的切片、维度的改变以及不同的拼接方法。希望可以对大家起到作用,谢谢。


关注我,内容持续更新(后续内容在作者专栏《从零基础到AI算法工程师》)!!!

这篇关于6.科学计算模块Numpy(3)对ndarray数组的常用操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143365

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

JS常用组件收集

收集了一些平时遇到的前端比较优秀的组件,方便以后开发的时候查找!!! 函数工具: Lodash 页面固定: stickUp、jQuery.Pin 轮播: unslider、swiper 开关: switch 复选框: icheck 气泡: grumble 隐藏元素: Headroom

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

常用的jdk下载地址

jdk下载地址 安装方式可以看之前的博客: mac安装jdk oracle 版本:https://www.oracle.com/java/technologies/downloads/ Eclipse Temurin版本:https://adoptium.net/zh-CN/temurin/releases/ 阿里版本: github:https://github.com/

30常用 Maven 命令

Maven 是一个强大的项目管理和构建工具,它广泛用于 Java 项目的依赖管理、构建流程和插件集成。Maven 的命令行工具提供了大量的命令来帮助开发人员管理项目的生命周期、依赖和插件。以下是 常用 Maven 命令的使用场景及其详细解释。 1. mvn clean 使用场景:清理项目的生成目录,通常用于删除项目中自动生成的文件(如 target/ 目录)。共性规律:清理操作

hdu 1166 敌兵布阵(树状数组 or 线段树)

题意是求一个线段的和,在线段上可以进行加减的修改。 树状数组的模板题。 代码: #include <stdio.h>#include <string.h>const int maxn = 50000 + 1;int c[maxn];int n;int lowbit(int x){return x & -x;}void add(int x, int num){while

019、JOptionPane类的常用静态方法详解

目录 JOptionPane类的常用静态方法详解 1. showInputDialog()方法 1.1基本用法 1.2带有默认值的输入框 1.3带有选项的输入对话框 1.4自定义图标的输入对话框 2. showConfirmDialog()方法 2.1基本用法 2.2自定义按钮和图标 2.3带有自定义组件的确认对话框 3. showMessageDialog()方法 3.1