重写Sylar基于协程的服务器(4、协程调度模块的设计)

2024-02-03 21:28

本文主要是介绍重写Sylar基于协程的服务器(4、协程调度模块的设计),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

重写Sylar基于协程的服务器(4、协程调度模块的设计)

重写Sylar基于协程的服务器系列:

重写Sylar基于协程的服务器(0、搭建开发环境以及项目框架 || 下载编译简化版Sylar)

重写Sylar基于协程的服务器(1、日志模块的架构)

重写Sylar基于协程的服务器(2、配置模块的设计)

重写Sylar基于协程的服务器(3、协程模块的设计)

重写Sylar基于协程的服务器(4、协程调度模块的设计)

重写Sylar基于协程的服务器(5、IO协程调度模块的设计)

简述

协程调度模块:让线程池里的每个线程都运行调度协程,并不断切换去执行协程任务。

协程调度器整体架构图

sylar实现的协程是非对称协程,虽然就调度器的架构看来,很反人类,一眼看去很像是对称协程。

问了一下GPT,回答如下:

实现了 IO Hook 模块的协程通常是非对称协程模型。在异步编程中,IO Hook 通常用于异步 IO 操作,而非对称协程模型更适合处理异步 IO 操作。

在非对称协程模型中,一个主协程(通常是事件循环或主任务)可以通过 IO Hook 来注册感兴趣的 IO 事件,并在事件发生时启动相应的协程执行。这样的模型更适用于事件驱动的编程,其中主协程负责管理整体的控制流,而子协程负责处理具体的 IO 操作。

协程调度器模块的设计是基于线程池来完成的,对线程池进行协程的定制化改造,让线程池模型能够适应协程的切换,如图:

调度器架构

协程调度模块设计

  1. 构造函数,用户创建协程调度器主要的参数有,设置参与协程调度的线程数量threadCount、主线程是否参与协程调度等,构造函数首先会为主线程原始的上下文创建一个协程(t_threadFiber),其次,如果用户指定了主协程需要参与协程调度,就会为成员变量m_rootFiber创建一个回调函数是Scheduler::run()的协程,并且指定该协程与t_threadFiber做上下文切换。主线程等待后面延迟将m_rootFiber切入,进入Scheduler::run()函数后,t_threadFiber保存主线程原始上下文,t_schRunFiber赋值为m_rootFiber即运行Scheduler::run()函数的协程。而子线程运行的回调函数就是Scheduler::run()函数,所以,子线程的t_threadFiber和t_schRunFiber是同一个协程对象。并且,因为主线程充当了一个调度协程,所以,创建子线程的时候,会少创建一个线程,即子线程的数量等于threadCount-1。当用户没有要使用主线程充当调度协程时,调度器最后会创建threadCount个子线程。

  2. Scheduler::run,协程调度部分,进入调度函数最开始会初始化t_threadFiber和t_schRunFiber变量,然后进入调度循环,在调度循环中,首先到任务队列中取任务,取到任务时,判断任务是协程还是回调,如果是协程,判断协程状态的合法性,只有合法的协程才能切入去执行,对于回调,会被封装成协程,再切入去执行。如果没有任务,就会去执行idle协程,idle协程是IO协程调度模块的重点,主要负责等待事件的到来然后唤醒相应任务协程。

    协程调度函数Scheduler::run伪代码:

    伪代码

  3. Scheduler::isStop,当用户调用了成员stop函数,且任务队列队列为空,且没有任何线程正在执行协程任务,即可认为整个协程调度器停止了,此时该函数返回true。

下一章将介绍IO协程调度模块。

感兴趣的同学,可以阅读一下本文实现的源码:https://github.com/LunarStore/lunar


本章完结

这篇关于重写Sylar基于协程的服务器(4、协程调度模块的设计)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/675463

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

搭建Kafka+zookeeper集群调度

前言 硬件环境 172.18.0.5        kafkazk1        Kafka+zookeeper                Kafka Broker集群 172.18.0.6        kafkazk2        Kafka+zookeeper                Kafka Broker集群 172.18.0.7        kafkazk3

怎么让1台电脑共享给7人同时流畅设计

在当今的创意设计与数字内容生产领域,图形工作站以其强大的计算能力、专业的图形处理能力和稳定的系统性能,成为了众多设计师、动画师、视频编辑师等创意工作者的必备工具。 设计团队面临资源有限,比如只有一台高性能电脑时,如何高效地让七人同时流畅地进行设计工作,便成为了一个亟待解决的问题。 一、硬件升级与配置 1.高性能处理器(CPU):选择多核、高线程的处理器,例如Intel的至强系列或AMD的Ry

Linux服务器Java启动脚本

Linux服务器Java启动脚本 1、初版2、优化版本3、常用脚本仓库 本文章介绍了如何在Linux服务器上执行Java并启动jar包, 通常我们会使用nohup直接启动,但是还是需要手动停止然后再次启动, 那如何更优雅的在服务器上启动jar包呢,让我们一起探讨一下吧。 1、初版 第一个版本是常用的做法,直接使用nohup后台启动jar包, 并将日志输出到当前文件夹n

基于51单片机的自动转向修复系统的设计与实现

文章目录 前言资料获取设计介绍功能介绍设计清单具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机

SprinBoot+Vue网络商城海鲜市场的设计与实现

目录 1 项目介绍2 项目截图3 核心代码3.1 Controller3.2 Service3.3 Dao3.4 application.yml3.5 SpringbootApplication3.5 Vue 4 数据库表设计5 文档参考6 计算机毕设选题推荐7 源码获取 1 项目介绍 博主个人介绍:CSDN认证博客专家,CSDN平台Java领域优质创作者,全网30w+

速盾:直播 cdn 服务器带宽?

在当今数字化时代,直播已经成为了一种非常流行的娱乐和商业活动形式。为了确保直播的流畅性和高质量,直播平台通常会使用 CDN(Content Delivery Network,内容分发网络)服务器来分发直播流。而 CDN 服务器的带宽则是影响直播质量的一个重要因素。下面我们就来探讨一下速盾视角下的直播 CDN 服务器带宽问题。 一、直播对带宽的需求 高清视频流 直播通常需要传输高清视频