eCos flash模拟EEPROM实现NV系统

2024-02-03 19:20

本文主要是介绍eCos flash模拟EEPROM实现NV系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Flash需要擦除的原因:先擦除后写入的原因是为了工业上制作方便,即物理实现方便。

#include <cyg/infra/diag.h>

#include <cyg/io/flash.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>

// SPI flash size = 4 MB
static bool init = false;
static cyg_mutex_t nv_mutex;
static unsigned char *e2prom_buf = NULL;
static unsigned long e2prom_sz = SZ_2K;
static unsigned long logical_e2prom_cur_idx = 0;
static unsigned long nr_logical_e2prom = 1;
static unsigned long blk_sz = SZ_64K;

#include "oem-nv-lib.c"

static int program_data(void)
{
    cyg_flashaddr_t err_addr;
    cyg_flashaddr_t flash_base = NV_FLASH_BYTES_ADDR;
    int status;
    unsigned long flash_offset;

    flash_offset = logical_e2prom_cur_idx * e2prom_sz;
    oem_printf("[OEM][%s] logical_e2prom_cur_idx: %d, flash_offset: 0x%x(%dK)\n",
            __func__, logical_e2prom_cur_idx, flash_offset, (flash_offset/SZ_1K));

    // 1) Mark we will program data
    status = cyg_flash_program(flash_base + flash_offset,
            e2prom_buf, 2, &err_addr);
    if (status != CYG_FLASH_ERR_OK) {
        oem_printf("[OEM][%s] 1) flash program err!!\n", __func__);
        goto err;
    }
    // 2) Programming data
    status = cyg_flash_program(flash_base + flash_offset + SZ_E2PROM_HDR,
            e2prom_buf + SZ_E2PROM_HDR, e2prom_sz - SZ_E2PROM_HDR, &err_addr);
    if (status != CYG_FLASH_ERR_OK) {
        oem_printf("[OEM][%s] 2) flash program err!!\n", __func__);
        goto err;
    }
    // 3) Mark we have completed programming data
    status = cyg_flash_program(flash_base + flash_offset + 2,
            e2prom_buf + 2, 2, &err_addr);
    if (status != CYG_FLASH_ERR_OK) {
        oem_printf("[OEM][%s] 3) flash program err!!\n", __func__);
        goto err;
    }
    return 0;
err:
    // TODO:
    return -1;
}

static int recovery_of_sudden_power_cut(void)
{
    cyg_flashaddr_t err_addr;
    cyg_flashaddr_t flash_base = NV_FLASH_BYTES_ADDR;
    int i;
    int status;
    unsigned long flash_offset;

    for (i = logical_e2prom_cur_idx; i > 0; i--) {
        flash_offset = i * e2prom_sz;
        status = cyg_flash_read(flash_base + flash_offset, e2prom_buf, e2prom_sz, &err_addr);
        if (status != CYG_FLASH_ERR_OK) {
            oem_printf("[OEM][%s] flash read err!!\n", __func__);
            goto err;
        }

        // little endian
        //oem_printf("magic: 0x%x\n", ((unsigned int*)e2prom_buf)[0]);
        if (((unsigned int *)e2prom_buf)[0] == 0xaaaa5555) {
            oem_printf("[OEM] i: %d, logical_e2prom_cur_idx: %d\n", i, logical_e2prom_cur_idx);
            break;
        }
    }
    if (i != logical_e2prom_cur_idx) {
        oem_printf("[OEM][%s] call cyg_flash_erase()\n", __func__);
        cyg_flash_erase(flash_base, blk_sz, &err_addr);
        logical_e2prom_cur_idx = 0;
        if (program_data() < 0) {
            goto err;
        }
    }

    return 0;
err:
    return -1;
}

static void show_flash_ptn(void)
{
    // uboot
    // offset: 0, size: 192K

    // for CFG_set & CFG_get(User config, Switch parameter)
    // Bottom-Boot flsh_cfg_off: 16K, flsh_cfg_sz: 20K
    // Top-Boot flsh_cfg_off: 4M - 20K, flsh_cfg_sz: 20K
    // !!No-Boot flsh_cfg_off: 196K(0x31000), flsh_cfg_sz: 20K
    //oem_printf("[OEM] flsh_cfg_off: 0x%x, flsh_cfg_sz: 0x%x\n", flsh_cfg_off, flsh_cfg_sz);

    // for emulating eeprom to save MAC ADDR(RF parameter)
    // Bottom-Boot flsh_cfg_boot_off: 12K
    // Top-Boot flsh_cfg_boot_off: 60K
    // !!No-Boot flsh_cfg_boot_off: 256K(0x40000), size: 512B
    oem_printf("[OEM] flsh_cfg_boot_off: 0x%x(%dK)\n", flsh_cfg_boot_off,
        (flsh_cfg_boot_off/SZ_1K));

    // for eCos firmware and size
    // Bottom-Boot flsh_cfg_fwm_off: 64K, flsh_cfg_fwm_sz: 4M - 64K
    // Top-Boot flsh_cfg_fwm_off: 64K, flsh_cfg_sz: 4M - 64K - 20K
    // !!No-Boot flsh_cfg_fwm_off: 320K(0x50000), flsh_cfg_sz: 4M - 320K
    oem_printf("[OEM] flsh_cfg_fwm_off: 0x%x(%dK), flsh_cfg_fwm_sz: 0x%x(%dK)\n",
            flsh_cfg_fwm_off, (flsh_cfg_fwm_off/SZ_1K),
            flsh_cfg_fwm_sz, (flsh_cfg_fwm_sz/SZ_1K));

    // for OEM NV read & write
    oem_printf("[OEM] flsh_nv_off: 0x%x(%dK)\n", NV_FLASH_BYTES_ADDR,
            NV_FLASH_BYTES_ADDR/SZ_1K);
}

API int nv_init(void)
{
    cyg_flash_info_t cfi;
    cyg_flashaddr_t err_addr;
    cyg_flashaddr_t flash_base = NV_FLASH_BYTES_ADDR;
    int status;
    unsigned long flash_offset;

    ///
    show_flash_ptn();
    oem_printf("[OEM] nv memory used size: %d Bytes\n", get_nvm_size());
    ///

    // Initializing the FLASH library
    cyg_flash_set_global_printf((cyg_flash_printf *)&diag_printf);
    cyg_flash_init(NULL);
    if (cyg_flash_get_info(0, &cfi) == CYG_FLASH_ERR_OK) {
        if (cfi.block_info) {
            blk_sz = cfi.block_info->block_size;
            // nr_logical_e2prom should be >= 1
            nr_logical_e2prom = blk_sz / e2prom_sz;
            oem_printf("[OEM] nr_logical_e2prom: %d\n", nr_logical_e2prom);

            oem_printf("[OEM] start_addr: 0x%x, end_addr: 0x%x, num_block_infos: %d, "
                    "block_size: %d, blocks: %d\n",
                    cfi.start, cfi.end, cfi.num_block_infos,
                    cfi.block_info->block_size, cfi.block_info->blocks);

            if (!e2prom_buf) {
                e2prom_buf = (unsigned char *)malloc(e2prom_sz);
                if (!e2prom_buf) {
                    oem_printf("[OEM][%s] Can not allocate memory for e2prom_buf!!\n", __func__);
                    goto err;
                }
            }

            for (logical_e2prom_cur_idx = 0; logical_e2prom_cur_idx < nr_logical_e2prom;
                    logical_e2prom_cur_idx++) {
                flash_offset = logical_e2prom_cur_idx * e2prom_sz;
                status = cyg_flash_read(flash_base + flash_offset, e2prom_buf, e2prom_sz, &err_addr);
                if (status != CYG_FLASH_ERR_OK) {
                    logical_e2prom_cur_idx = 0;
                    oem_printf("[OEM][%s] flash read err!!\n", __func__);
                    goto err;
                }
                if (e2prom_buf[0] == 0xff &&
                    e2prom_buf[1] == 0xff &&
                    e2prom_buf[2] == 0xff &&
                    e2prom_buf[3] == 0xff) {
                    oem_printf("[OEM][%s] Got a free logical e2prom idx: %d\n",
                        __func__, logical_e2prom_cur_idx);
                    break;
                }
            }

            oem_printf("[OEM][%s] before chng, logical e2prom idx: %d\n",
                    __func__, logical_e2prom_cur_idx);
            if (logical_e2prom_cur_idx == nr_logical_e2prom) {
                cyg_flash_erase(flash_base, blk_sz, &err_addr);
                logical_e2prom_cur_idx = 0;
                if (program_data() < 0) {
                    goto err;
                }
            } else if (logical_e2prom_cur_idx > 0 && logical_e2prom_cur_idx < nr_logical_e2prom) {
                logical_e2prom_cur_idx--;
            }

            if (recovery_of_sudden_power_cut() < 0) {
                goto err;
            }

            init = true;
        }
    }

    cyg_mutex_init(&nv_mutex);
    return 0;
err:
    return -1;
}

API int nv_read(nv_items_enum_t id, u8 *buf, int len)
{
    cyg_flashaddr_t err_addr;
    // flash_base is where in the flash to read from, it is a byte address,
    // not sector address.
    cyg_flashaddr_t flash_base = NV_FLASH_BYTES_ADDR;
    int status;
    unsigned long flash_offset = 0;
    long nv_offset = NV_OFFSET(id);
    unsigned long nv_sz = NV_SZ(id);

    cyg_mutex_lock(&nv_mutex);
    if (!init) {
        if (false == nv_init()) {
            goto err;
        }
    }

    if (nv_offset < 0) {
        goto err;
    }
    if (nv_sz > len) {
        nv_sz = len;
    }

    flash_offset = logical_e2prom_cur_idx * e2prom_sz;
    status = cyg_flash_read(flash_base + flash_offset + nv_offset, (void *)buf, nv_sz, &err_addr);
    if (status != CYG_FLASH_ERR_OK) {
        oem_printf("[OEM][%s] flash read err!!\n", __func__);
        goto err;
    }
    cyg_mutex_unlock(&nv_mutex);
    oem_printf("[OEM][%s] succeeded in reading nv_%d, nv_sz: %d Bytes "
            "@logical_e2prom_cur_idx: %d\n", __func__, id, nv_sz,
            logical_e2prom_cur_idx);
    return nv_sz;
err:
    cyg_mutex_unlock(&nv_mutex);
    return -1;
}

API int nv_write(nv_items_enum_t id, u8 *buf, int len)
{
    unsigned char magic[] = {0x55, 0x55, 0xaa, 0xaa};
    cyg_flashaddr_t err_addr;
    // flash_base is where in the flash to write from, it is a byte address,
    // not sector address.
    cyg_flashaddr_t flash_base = NV_FLASH_BYTES_ADDR;
    int status;
    unsigned long flash_offset = 0;
    long nv_offset = NV_OFFSET(id);
    unsigned long nv_sz = NV_SZ(id);

    cyg_mutex_lock(&nv_mutex);
    if (!init) {
        if (false == nv_init()) {
            goto err;
        }
    }

    if (nv_offset < 0) {
        goto err;
    }
    if (nv_sz > len) {
        nv_sz = len;
    }

    flash_offset = logical_e2prom_cur_idx * e2prom_sz;
    status = cyg_flash_read(flash_base + flash_offset, e2prom_buf, e2prom_sz, &err_addr);
    if (status != CYG_FLASH_ERR_OK) {
        oem_printf("[OEM][%s] flash read err!!\n", __func__);
        goto err;
    }
    memcpy(e2prom_buf, magic, sizeof(magic));
    memcpy(e2prom_buf + nv_offset, buf, nv_sz);
#if defined(BATCH_COMMIT)
    cyg_mutex_unlock(&nv_mutex);
    return nv_sz;
#else
    // No any data in e2prom, so check here
    if (0 == logical_e2prom_cur_idx) {
        status = cyg_flash_read(flash_base, buf, 4, &err_addr);
        if (status != CYG_FLASH_ERR_OK) {
            oem_printf("[OEM][%s] Oops here, check it manually\n", __func__);
        } else if (CYG_FLASH_ERR_OK == status && buf[0] == 0xff &&
                buf[1] == 0xff &&
                buf[2] == 0xff &&
                buf[3] == 0xff) {
            oem_printf("[OEM][%s] do not add e2prom cur index\n", __func__);
        } else {
            logical_e2prom_cur_idx++;
        }
    } else {
        logical_e2prom_cur_idx++;
    }

    if (logical_e2prom_cur_idx >= nr_logical_e2prom) {
        logical_e2prom_cur_idx = 0;
        cyg_flash_erase(flash_base, blk_sz, &err_addr);
    }

    if (program_data() < 0) {
        goto err;
    }
    cyg_mutex_unlock(&nv_mutex);
    return nv_sz;
#endif
err:
    cyg_mutex_unlock(&nv_mutex);
    return -1;
}

#if defined(BATCH_COMMIT)
API int nv_commit(void)
{
    cyg_flashaddr_t err_addr;
    cyg_flashaddr_t flash_base = NV_FLASH_BYTES_ADDR;
    int status;
    u8 buf[4];

    cyg_mutex_lock(&nv_mutex);

    // No any data in e2prom, so check here
    if (0 == logical_e2prom_cur_idx) {
        status = cyg_flash_read(flash_base, buf, 4, &err_addr);
        if (status != CYG_FLASH_ERR_OK) {
            oem_printf("[OEM][%s] Oops here, check it manually\n", __func__);
        } else if (CYG_FLASH_ERR_OK == status && buf[0] == 0xff &&
                buf[1] == 0xff &&
                buf[2] == 0xff &&
                buf[3] == 0xff) {
            oem_printf("[OEM][%s] do not add e2prom cur index\n", __func__);
        } else {
            logical_e2prom_cur_idx++;
        }
    } else {
        logical_e2prom_cur_idx++;
    }

    if (logical_e2prom_cur_idx >= nr_logical_e2prom) {
        oem_printf("[OEM][%s] need erase block, logical_e2prom_cur_idx: %d\n",
                __func__, logical_e2prom_cur_idx);
        logical_e2prom_cur_idx = 0;
        cyg_flash_erase(flash_base, blk_sz, &err_addr);
    }

    // 3M = 0x300000
    // spi rd 300000 64
    // spi wr 300000 55 55 aa aa
    // spi er 300000 65536
    if (program_data() < 0) {
        goto err;
    }

    cyg_mutex_unlock(&nv_mutex);
    oem_printf("[OEM][%s] succeeded in updating logical_e2prom_cur_idx: %d\n",
            __func__, logical_e2prom_cur_idx);
    return 0;
err:
    cyg_mutex_unlock(&nv_mutex);
    return -1;
}
#else
API int nv_commit(void)
{
    return 0;
}
#endif

这篇关于eCos flash模拟EEPROM实现NV系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/675135

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo