强化学习 - Monte Carlo Tree Search (MCTS)

2024-02-02 02:52

本文主要是介绍强化学习 - Monte Carlo Tree Search (MCTS),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是机器学习

强化学习中的Monte Carlo Tree Search (MCTS) 是一种用于决策制定和搜索的算法,特别在不确定环境下表现出色。

1. 强化学习背景

在强化学习中,一个智能体通过与环境的交互学习,以便在某个任务上获得最大的奖励。MCTS是一种用于搜索最优决策的方法。

2. MCTS概览

MCTS主要有四个阶段:选择(Selection)、扩展(Expansion)、模拟(Simulation)和回溯(Backpropagation)。算法通过多次重复这些阶段来逐步优化决策。

2.1 选择(Selection)

从树的根节点(当前状态)开始,通过一定策略选择子节点,直到达到叶节点。这个过程基于一定的选择策略,例如UCB (Upper Confidence Bound)。

2.2 扩展(Expansion)

当达到叶节点时,根据问题的定义,扩展树以添加一个或多个子节点。这模拟了在现实中采取一个动作并观察新状态的过程。

2.3 模拟(Simulation)

从扩展的节点开始,执行模拟来估计这个节点的价值。模拟是通过一种模型或随机方法生成的,模拟直到达到某个终止条件。

2.4 回溯(Backpropagation)

根据模拟的结果,将回报值(reward)传播回来更新经过的所有节点的统计信息,如访问次数和累计奖励。

3. 伪代码示例

以下是MCTS的简化伪代码:

def mcts(root_state, budget):root_node = Node(state=root_state)for _ in range(budget):# Selectionselected_node = select(root_node)# Expansionif not selected_node.is_terminal():expanded_node = expand(selected_node)selected_node = expanded_node# Simulationreward = simulate(selected_node.state)# Backpropagationbackpropagate(selected_node, reward)best_child = best_child(root_node)return best_child.action

4. Node 类

在实现中,你需要定义一个节点类,用于表示搜索树的节点。每个节点应该包含状态信息、动作信息、访问次数、累计奖励等。

  1. UCB选择策略
    UCB是一种常用的节点选择策略,其计算方式为:

在这里插入图片描述

其中:

  • C 是一个可调节的参数。

6. 注意事项

  • MCTS的性能很大程度上取决于选择策略和模拟过程的质量。
  • 可以通过调整参数和使用领域专业知识来改进算法性能。
  • MCTS常用于处理复杂环境和不完全信息的问题。

实际应用中可能需要根据具体情况进行调整和优化。深入了解MCTS的原理和实现将有助于更好地应用该算法。

这篇关于强化学习 - Monte Carlo Tree Search (MCTS)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/669276

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件