Spark调优 | 不可避免的 Join 优化

2024-02-01 21:40

本文主要是介绍Spark调优 | 不可避免的 Join 优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SparkSQL总体流程介绍

在阐述Join实现之前,我们首先简单介绍SparkSQL的总体流程,一般地,我们有两种方式使用SparkSQL,一种是直接写sql语句,这个需要有元数据库支持,例如Hive等,另一种是通过Dataset/DataFrame编写Spark应用程序。如下图所示,sql语句被语法解析(SQL AST)成查询计划,或者我们通过Dataset/DataFrame提供的APIs组织成查询计划,查询计划分为两大类:逻辑计划和物理计划,这个阶段通常叫做逻辑计划,经过语法分析(Analyzer)、一系列查询优化(Optimizer)后得到优化后的逻辑计划,最后被映射成物理计划,转换成RDD执行。

对于语法解析、语法分析以及查询优化,本文不做详细阐述,本文重点介绍Join的物理执行过程。

Join基本要素

如下图所示,Join大致包括三个要素:Join方式、Join条件以及过滤条件。其中过滤条件也可以通过AND语句放在Join条件中。

Spark支持所有类型的Join,包括:

  • inner join

  • left outer join

  • right outer join

  • full outer join

  • left semi join

  • left anti join

下面分别阐述这几种Join的实现。

Join基本实现流程

总体上来说,Join的基本实现流程如下图所示,Spark将参与Join的两张表抽象为流式遍历表(streamIter)和查找表(buildIter),通常streamIter为大表,buildIter为小表,我们不用担心哪个表为streamIter,哪个表为buildIter,这个spark会根据join语句自动帮我们完成。

在实际计算时,spark会基于streamIter来遍历,每次取出streamIter中的一条记录rowA,根据Join条件计算keyA,然后根据该keyA去buildIter中查找所有满足Join条件(keyB==keyA)的记录rowBs,并将rowBs中每条记录分别与rowAjoin得到join后的记录,最后根据过滤条件得到最终join的记录。

从上述计算过程中不难发现,对于每条来自streamIter的记录,都要去buildIter中查找匹配的记录,所以buildIter一定要是查找性能较优的数据结构。spark提供了三种join实现:sort merge join、broadcast join以及hash join。

sort merge join实现

要让两条记录能join到一起,首先需要将具有相同key的记录在同一个分区,所以通常来说,需要做一次shuffle,map阶段根据join条件确定每条记录的key,基于该key做shuffle write,将可能join到一起的记录分到同一个分区中,这样在shuffle read阶段就可以将两个表中具有相同key的记录拉到同一个分区处理。前面我们也提到,对于buildIter一定要是查找性能较优的数据结构,通常我们能想到hash表,但是对于一张较大的表来说,不可能将所有记录全部放到hash表中,另外也可以对buildIter先排序,查找时按顺序查找,查找代价也是可以接受的,我们知道,spark shuffle阶段天然就支持排序,这个是非常好实现的,下面是sort merge join示意图。

在shuffle read阶段,分别对streamIter和buildIter进行merge sort,在遍历streamIter时,对于每条记录,都采用顺序查找的方式从buildIter查找对应的记录,由于两个表都是排序的,每次处理完streamIter的一条记录后,对于streamIter的下一条记录,只需从buildIter中上一次查找结束的位置开始查找,所以说每次在buildIter中查找不必重头开始,整体上来说,查找性能还是较优的。

broadcast join实现

为了能具有相同key的记录分到同一个分区,我们通常是做shuffle,那么如果buildIter是一个非常小的表,那么其实就没有必要大动干戈做shuffle了,直接将buildIter广播到每个计算节点,然后将buildIter放到hash表中,如下图所示。

从上图可以看到,不用做shuffle,可以直接在一个map中完成,通常这种join也称之为map join。那么问题来了,什么时候会用broadcast join实现呢?这个不用我们担心,spark sql自动帮我们完成,当buildIter的估计大小不超过参数spark.sql.autoBroadcastJoinThreshold设定的值(默认10M),那么就会自动采用broadcast join,否则采用sort merge join。

hash join实现

除了上面两种join实现方式外,spark还提供了hash join实现方式,在shuffle read阶段不对记录排序,反正来自两格表的具有相同key的记录会在同一个分区,只是在分区内不排序,将来自buildIter的记录放到hash表中,以便查找,如下图所示。

不难发现,要将来自buildIter的记录放到hash表中,那么每个分区来自buildIter的记录不能太大,否则就存不下,默认情况下hash join的实现是关闭状态,如果要使用hash join,必须满足以下四个条件:

  • buildIter总体估计大小超过spark.sql.autoBroadcastJoinThreshold设定的值,即不满足broadcast join条件

  • 开启尝试使用hash join的开关,spark.sql.join.preferSortMergeJoin=false

  • 每个分区的平均大小不超过spark.sql.autoBroadcastJoinThreshold设定的值,即shuffle read阶段每个分区来自buildIter的记录要能放到内存中

  • streamIter的大小是buildIter三倍以上

所以说,使用hash join的条件其实是很苛刻的,在大多数实际场景中,即使能使用hash join,但是使用sort merge join也不会比hash join差很多,所以尽量使用hash

下面我们分别阐述不同Join方式的实现流程。

inner join

inner join是一定要找到左右表中满足join条件的记录,我们在写sql语句或者使用DataFrmae时,可以不用关心哪个是左表,哪个是右表,在spark sql查询优化阶段,spark会自动将大表设为左表,即streamIter,将小表设为右表,即buildIter。这样对小表的查找相对更优。其基本实现流程如下图所示,在查找阶段,如果右表不存在满足join条件的记录,则跳过。

left outer join

left outer join是以左表为准,在右表中查找匹配的记录,如果查找失败,则返回一个所有字段都为null的记录。我们在写sql语句或者使用DataFrmae时,一般让大表在左边,小表在右边。其基本实现流程如下图所示。

right outer join

right outer join是以右表为准,在左表中查找匹配的记录,如果查找失败,则返回一个所有字段都为null的记录。所以说,右表是streamIter,左表是buildIter,我们在写sql语句或者使用DataFrmae时,一般让大表在右边,小表在左边。其基本实现流程如下图所示。

full outer join

full outer join相对来说要复杂一点,总体上来看既要做left outer join,又要做right outer join,但是又不能简单地先left outer join,再right outer join,最后union得到最终结果,因为这样最终结果中就存在两份inner join的结果了。因为既然完成left outer join又要完成right outer join,所以full outer join仅采用sort merge join实现,左边和右表既要作为streamIter,又要作为buildIter,其基本实现流程如下图所示。

由于左表和右表已经排好序,首先分别顺序取出左表和右表中的一条记录,比较key,如果key相等,则joinrowA和rowB,并将rowA和rowB分别更新到左表和右表的下一条记录;如果keyA<keyB,则说明右表中没有与左表rowA对应的记录,那么joinrowA与nullRow,紧接着,rowA更新到左表的下一条记录;如果keyA>keyB,则说明左表中没有与右表rowB对应的记录,那么joinnullRow与rowB,紧接着,rowB更新到右表的下一条记录。如此循环遍历直到左表和右表的记录全部处理完。

left semi join

left semi join是以左表为准,在右表中查找匹配的记录,如果查找成功,则仅返回左边的记录,否则返回null,其基本实现流程如下图所示。

left anti join

left anti join与left semi join相反,是以左表为准,在右表中查找匹配的记录,如果查找成功,则返回null,否则仅返回左边的记录,其基本实现流程如下图所示。

总结

Join是数据库查询中一个非常重要的语法特性,在数据库领域可以说是“得join者的天下”,SparkSQL作为一种分布式数据仓库系统,给我们提供了全面的join支持,并在内部实现上无声无息地做了很多优化,了解join的实现将有助于我们更深刻的了解我们的应用程序的运行轨迹。

 

 

这篇关于Spark调优 | 不可避免的 Join 优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/668557

相关文章

Java嵌套for循环优化方案分享

《Java嵌套for循环优化方案分享》介绍了Java中嵌套for循环的优化方法,包括减少循环次数、合并循环、使用更高效的数据结构、并行处理、预处理和缓存、算法优化、尽量减少对象创建以及本地变量优化,通... 目录Java 嵌套 for 循环优化方案1. 减少循环次数2. 合并循环3. 使用更高效的数据结构4

mysql线上查询之前要性能调优的技巧及示例

《mysql线上查询之前要性能调优的技巧及示例》文章介绍了查询优化的几种方法,包括使用索引、避免不必要的列和行、有效的JOIN策略、子查询和派生表的优化、查询提示和优化器提示等,这些方法可以帮助提高数... 目录避免不必要的列和行使用有效的JOIN策略使用子查询和派生表时要小心使用查询提示和优化器提示其他常

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

数据库使用之union、union all、各种join的用法区别解析

《数据库使用之union、unionall、各种join的用法区别解析》:本文主要介绍SQL中的Union和UnionAll的区别,包括去重与否以及使用时的注意事项,还详细解释了Join关键字,... 目录一、Union 和Union All1、区别:2、注意点:3、具体举例二、Join关键字的区别&php

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX