异步时钟亚稳态 的解决方案——多bit信号

2024-02-01 21:18

本文主要是介绍异步时钟亚稳态 的解决方案——多bit信号,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1. 时钟偏斜 导致的采样中间值问题
  • 2. Gray码
      • 循环单bit翻转 编码方式
  • 3. 同步使能 valid
      • avalid 最小持续时间 和 最小时间间隔
  • 3. 异步FIFO


FPGA 设计之 跨时钟域(三 - 多比特小结)
FPGA 设计之 跨时钟域(四 - 格雷码)
FPGA 设计之 跨时钟域(六 - 握手)
同步valid&ready握手 与 异步valid&ack握手
《Clock Domain Crossing》 翻译与理解(5)多信号跨时钟域传输
推荐】数字芯片跨时钟域设计经典论文
多bit信号跨时钟域怎么办? – CDC的那些事(4)
菜鸟教程:4.2 Verilog 跨时钟域传输:慢到快

1. 时钟偏斜 导致的采样中间值问题

时钟偏斜:时钟沿信号到达各触发器CK端的时间不同

这会导致多bit信号的每个触发器值变化不是同时的,有的变得快有的变得慢,如果每个bit都没变完,就被异步时钟采样了,就会出现中间值。

单bit信号电平也好,脉冲也好跨时钟域,采样到了就算有点延迟也没关系。
但是多bit信号要求整个变化过程都是恒定的,中间出现了第三个值就可能对功能产生影响。

看图

在这里插入图片描述
红线处adata由000变为111,因为时钟偏斜,该信号每个bit真正开始拉高的时刻不一样。如果异步时钟bclk在不同的时刻采样会对应不同时刻的值,3条绿线分别对应采样到001、101、111。

尽管最终也会采到正确的值,但是中间值的出现会在bclk内存在一拍,思考如何消除这个。

2. Gray码

格雷码,yyds

回到问题,中间值的出现是因为采样的时候各bit变化情况不一,那我让每个时钟沿处 电平变化的触发器个数只有一个不就完事了。

反正二进制计数器是不可能只变1bit,Gray码可以,如下表

Gray码 二进制码
000 000
001 001
011 010
010 011
110 100
111 101
101 110
100 111

由此可见,Gray码的邻位只有1bit翻转,并且数值2^N与0也只有1bit翻转

实际上不一定非得按照Grey码的值来,基于此。

相邻信号只有1bit翻转,且满足"3个沿"条件 可直接 电平同步实现多bit信号的跨时钟域传输。

其实就是将多bit信号跨时钟域问题转化为单bit信号的跨时钟域问题

然后给出一个Gray码与二进制码的转换方式

assign gray = (binary >> 1) ^ binary;				//binary code to gray codeinteger i;
for(i=0;i<DATA_WIDTH;i=i+1)							//gray code to binary codebinary[i] = ^(gray >> i);

循环单bit翻转 编码方式

就是这个多bit信号的变化顺序是从最小值到最大值,然后又转回最小值或者反过来。在这种循环的变化方式下,该如何编码保证相邻状态间只有1bit翻转呢?

例如0,1,2,3,4,5,6,7,0,1,2,…这种。
但如果有中间值突然蹦到其他值,例如0,1,2,3,4,5,0,1,2,3,4,5,6,7,0,…就需要具体问题具体分析了

循环变化,值域个数为2^N时,使用 Gray码

Gray自己就是2^N的值可实现循环变化时的单bit翻转

循环变化,值域个数为偶数但不满足2^N时,使用 带扩展位的Gray码

例如6、10、12这种不满足2^N,就可以在Gray码的基础上加一位扩展位。

例如可取的值有6个,分成两半,一半是扩展位为0的递增Gray码,另一半是扩展位为1的递减Gray码

变化过程如下:

0_000 (0)1_000	(5)				//3个数是扩展位为0的递增Gray码,另外3个数是扩展位为1的递减Gray码↓		    	↑
0_001 (1)	  1_001 (4)↓		    	↑
0_011 (2)1_011 (3)

再如 10

0_000  (0)1_000  (9)↓		    	 ↑
0_001  (1)	   1_001  (8)↓		    	 ↑
0_011  (2)	   1_011  (7)↓		    	 ↑
0_010  (3)	   1_010  (6)↓		    	 ↑
0_110  (4)1_110  (5)

循环变化,值域个数为奇数,可 ×2转化为偶数情形

奇数个数循环的话,可 每2次奇数个数的循环看作是1次偶数个数的循环,例如

个数为5时,则每2个5转化为1个10就变成偶数情形,使用带扩展位的Gray码

第一轮和第二轮的变换过程如下,解码也不难

0_000  (第一轮0)1_000  (第二轮4)↓		    	 		 ↑
0_001  (第一轮1)	       1_001  (第二轮3)↓		    	 		 ↑
0_011  (第一轮2)	  	   1_011  (第二轮2)↓		    	 		 ↑
0_010  (第一轮3)	       1_010  (第二轮1)↓		    	 		 ↑
0_110  (第一轮4)1_110  (第二轮0)

异步FIFO的读写指针就是借助的这种形式。

3. 同步使能 valid

Gray码是简单易行,这里还有另一个思路。

你这个时钟偏斜让每个bit变化时刻不统一嘛,那我等你多bit数据稳定了再采样不就完事了。

那怎么才能确定你这个多bit信号稳定了呢?

一般啊,多bit信号传输 总会配一个1bit有效标志valid,它会与多bit信号时钟对齐,并且传输时为高。

如果时间够用的话,对valid直接打三拍判个沿就可以采样了,打拍也算延迟了。

如下图所示

在这里插入图片描述

avalid拉低表示传输结束,adata没变是用于省电,常见手法

上代码

module data_sync#(DATA_WIDTH = 4)(input					rstn,input 					aclk,input [DATA_WIDTH-1:0]  adata,input 					avalid,input 					bclk,output [DATA_WIDTH-1:0] bdata,output					bvalid);reg bvalid_d1;
reg bvalid_d2;
reg bvalid_d3;
wire bvalid_pl;
reg [DATA_WIDTH-1:0] bdata_r;
reg bvalid_r;always@(posedge clk) beginif(!rstn) beginbvalid_d1 <= 1'b0;bvalid_d2 <= 1'b0;bvalid_d3 <= 1'b0;endelse beginbvalid_d1 <= avalid;bvalid_d2 <= bvalid_d1;bvalid_d3 <= bvalid_d2;end
endassign bvalid_pl = bvalid_d2 && (!bvalid_d3);			//界定bvalid的拉高和拉低always@(posedge clk) beginif(!rstn) bdata_r <= 0;else if(bvalid_pl)bdata_r <= adata;
endalways@(posedge clk) beginif(!rstn) bvalid_r <= 0;else if(bvalid_pl)bvalid_r <= 1'b1;
endassign bdata = bdata_r;
assign bvalid = bvalid_r;endmodule

为什么要做个脉冲,而不是直接在bvalid_d2为高时采样、为低时停止采样呢?
从图中可以看出,bvalid_d2的下降沿时刻对应的avalid已经为低了,即adata可能已经发生了变化。
所以bdata不能持续地驱动,即bdata <= adata;,而只能在脉冲时刻驱动一次

注意bvalid和bdata可根据实际情况调整有效时间,因为多bit信号已经捕获,因此需要持续多长时间需根据具体设计决定

从图中可以看出,bclk采样adata是基于bvalid_pl脉冲,所如果bvalid_pl为高时adata是否有可能变化为新值了?

avalid 最小持续时间 和 最小时间间隔

● 最小持续时间:其实很好计算,从bclk采样到avalid开始,经过了 3 T b c l k 3T_{bclk} 3Tbclk才将adata采样,结合之前讲到的脉冲稳定采样的"3个沿"标准,所以 avalid的最小持续时间为 1.5 T b c l k + 3 T b c l k 1.5T_{bclk}+3T_{bclk} 1.5Tbclk+3Tbclk

● 最小时间间隔:与脉冲跨时钟域问题类似,如果两次脉冲的间隔过小,会让接受时钟域认为是一次脉冲。

同理,对于多bit传输来说,每次传输bvalid拉高,那么两次bvalid为高之间的间隔也不能过小,会让bclk认为是同一次传输,只会产生一个上升沿脉冲,所以也只更新一次数据。

那么bvalid为低的最小间隔是多少呢?其实就是bclk的三个沿,也就是说只要能让bclk采样到avalid为低,就可以产生两次采样脉冲,进而采样两次了。

在这里插入图片描述

上图就表明了avalid的持续时间和间隔时间的极限情况。

可见同步使能的方法对使能持续时间和间隔时间都有限制,只要某一个限制不满足就会丢失adata,这也说明aclk的adata变化较为频繁,可采用异步FIFO解决。

实际上可采用握手的方法为avalid和adata展宽,然后使用同步使能的方法,但是握手非常耗费时间,不如直接上FIFO。

3. 异步FIFO

这个异步FIFO就行啊,一端写、一端读,读写时钟不一样。

但是异步FIFO实际上并未解决数据信号跨时钟域问题,而是把问题转化成多bit读写指针的跨时钟域问题了。

所以对于读写指针而言,需要电平同步 + Grey码的方式进行处理,同时读写逻辑也并不关注读写指针的变化过程,因此快采慢的多采样问题和慢采快的漏数问题都不会产生影响。

因此,full和empty标志并不能实时反应当前时刻FIFO的真实状态,但这种错误并不会造成满写和空读的问题。

详情见异步FIFO设计

这篇关于异步时钟亚稳态 的解决方案——多bit信号的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/668490

相关文章

在MySQL执行UPDATE语句时遇到的错误1175的解决方案

《在MySQL执行UPDATE语句时遇到的错误1175的解决方案》MySQL安全更新模式(SafeUpdateMode)限制了UPDATE和DELETE操作,要求使用WHERE子句时必须基于主键或索引... mysql 中遇到的 Error Code: 1175 是由于启用了 安全更新模式(Safe Upd

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Java下载文件中文文件名乱码的解决方案(文件名包含很多%)

《Java下载文件中文文件名乱码的解决方案(文件名包含很多%)》Java下载文件时,文件名中文乱码问题通常是由于编码不正确导致的,使用`URLEncoder.encode(filepath,UTF-8... 目录Java下载文件中文文件名乱码问题一般情况下,大家都是这样为了解决这个问题最终解决总结Java下

Idea实现接口的方法上无法添加@Override注解的解决方案

《Idea实现接口的方法上无法添加@Override注解的解决方案》文章介绍了在IDEA中实现接口方法时无法添加@Override注解的问题及其解决方法,主要步骤包括更改项目结构中的Languagel... 目录Idea实现接China编程口的方法上无法添加@javascriptOverride注解错误原因解决方

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

异步线程traceId如何实现传递

《异步线程traceId如何实现传递》文章介绍了如何在异步请求中传递traceId,通过重写ThreadPoolTaskExecutor的方法和实现TaskDecorator接口来增强线程池,确保异步... 目录前言重写ThreadPoolTaskExecutor中方法线程池增强总结前言在日常问题排查中,

MYSQL事务死锁问题排查及解决方案

《MYSQL事务死锁问题排查及解决方案》:本文主要介绍Java服务报错日志的情况,并通过一系列排查和优化措施,最终发现并解决了服务假死的问题,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录问题现象推测 1 - 客户端无错误重试配置推测 2 - 客户端超时时间过短推测 3 - mysql 版本问

微服务架构之使用RabbitMQ进行异步处理方式

《微服务架构之使用RabbitMQ进行异步处理方式》本文介绍了RabbitMQ的基本概念、异步调用处理逻辑、RabbitMQ的基本使用方法以及在SpringBoot项目中使用RabbitMQ解决高并发... 目录一.什么是RabbitMQ?二.异步调用处理逻辑:三.RabbitMQ的基本使用1.安装2.架构

Android kotlin语言实现删除文件的解决方案

《Androidkotlin语言实现删除文件的解决方案》:本文主要介绍Androidkotlin语言实现删除文件的解决方案,在项目开发过程中,尤其是需要跨平台协作的项目,那么删除用户指定的文件的... 目录一、前言二、适用环境三、模板内容1.权限申请2.Activity中的模板一、前言在项目开发过程中,尤

Linux内存泄露的原因排查和解决方案(内存管理方法)

《Linux内存泄露的原因排查和解决方案(内存管理方法)》文章主要介绍了运维团队在Linux处理LB服务内存暴涨、内存报警问题的过程,从发现问题、排查原因到制定解决方案,并从中学习了Linux内存管理... 目录一、问题二、排查过程三、解决方案四、内存管理方法1)linux内存寻址2)Linux分页机制3)