前一百成绩分析

2024-02-01 18:12
文章标签 分析 成绩 一百

本文主要是介绍前一百成绩分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、实施目的


基于考情,针对目标生制定学习成果“一生一案”方案,帮助目标生消灭短板学科,达到各科均衡发展。


二、实施方法


1、对年级总分科目总分排名前80的学生,制定“一生一案”
2、对标总分名次,设置单科合理区间,超出单科合理区间视为“薄弱学科”,并按名次划分不同档位
3、找出薄弱学科的责任老师
4、由各班班主任在班科联席会上,落实到人,安排到位
5、下次统考,进行成果考核


三、单科区间设置标准


总分前30名,单科合理区间为【总分名次,总分名次+20】
总分31至80名,单科合理区间为【总分名次,总分名次+30】
各单科合理区间往后A、B、C、D档区间长度分别设置为10、20、30、50,超出D档为E档


四、考核标准


下次统考目标生单科名次前进1挡,视为达标
前进2挡及以上,定为优秀

最后成果:

实现方式:

通过python代码实现:

1.下载vscode

通过腾讯应用里面可以下载

vscode下载地址
安装就ok了

2.下载安装python解释器

python 官网找到python 3.12.0版本下载安装(各个版本之间语法有些区别)

版本下载地址:https://www.python.org/ftp/python/3.12.0/python-3.12.0-amd64.exe

然后安装的时候勾选path

点击立即安装就好了,然后勾选Add python.exe to PATH

3.配置环境和库

同时按win+r

然后输入cmd

然后输入一下指令

pip install --upgrade pip -i https://pypi.tuna.tsinghua.edu.cn/simple some-package
pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple some-package
pip install pandas -i https://pypi.tuna.tsinghua.edu.cn/simple some-package
pip install openpyxl -i https://pypi.tuna.tsinghua.edu.cn/simple some-package
pip install jupyter -i https://pypi.tuna.tsinghua.edu.cn/simple some-package

4.新建一个成绩分析文件夹

将他拖到vscode里面

5.在这个文件夹下新建一个前一百分析.ipynb文件

然后贴入代码:

import numpy as np 
import pandas as pd 
import os
import glob
from openpyxl import load_workbook
from openpyxl.styles import PatternFillf_name = r"C:\Users\xxxxxx\Desktop\成绩\考试.xlsx" #复制文件地址就好,#不需要改斜杠,出现黄色框框也没事df = pd.read_excel(f_name)
subjects = ["语文","数学","英语","物理","历史","道法","化学","体育","生物","地理","英语听说","历史与道法"]
columns_list = df.columns.tolist() #获取源文件的所有列#1.计算总分
df['总分']=0
for i in columns_list: #添加总分这一列if i in subjects and i != "历史与道法":df["总分"]=df['总分']+df[i]  df = df.sort_values(by='总分',ascending=False)#提取生成新的dataframe
data = df[['班级','姓名','总分']][:100]
data['总分校名'] = data['总分'].rank(ascending=False,method='min').astype(int)#年级前三十单科下线位+20,剩下的单科下线为+30
data['单科下线'] = np.where(data["总分校名"]<=30,data['总分校名']+20,data['总分校名']+30)
data['单科合理区间'] = data.apply(lambda row:f"[{row['总分校名']}~{row['单科下线']}]",axis=1)
data['A档下线'] = data['单科下线']+10   #A
data['单科A档区间'] = data.apply(lambda row:f"[{row['单科下线']+1}~{row['A档下线']}]",axis=1)
data['B档下线'] = data['A档下线']+20    #B
data['单科B档区间'] = data.apply(lambda row:f"[{row['A档下线']+1}~{row['B档下线']}]",axis=1)
data['C档下线'] = data['B档下线']+30    #C
data['单科C档区间'] = data.apply(lambda row:f"[{row['B档下线']+1}~{row['C档下线']}]",axis=1)
data['D档下线'] = data['C档下线']+50    #D
data['单科D档区间'] = data.apply(lambda row:f"[{row['C档下线']+1}~{row['D档下线']}]",axis=1)
#E
data['单科E档区间'] = data.apply(lambda row:f"[{row['D档下线']+1}~+∞]",axis=1)
#
###单科档位比较获得
def compare_grade(row,subject):subject_grade = row[subject+"校名"]if subject_grade<=row["单科下线"]:return ""elif subject_grade>row["单科下线"] and subject_grade<=row["A档下线"]:return "A"elif subject_grade>row["A档下线"] and subject_grade<=row["B档下线"]:return "B"elif subject_grade>row["B档下线"] and subject_grade<=row["C档下线"]:return "C"elif subject_grade>row["C档下线"] and subject_grade<=row["D档下线"]:return "D"elif subject_grade>row['D档下线']:return "E"else:return ""
#
def single_subject_analysis(subject):if subject in subjects:data[subject] = df[subject]#获得语文成绩data[subject+'校名'] = data[subject].rank(ascending=False,method='min')#获得语文排名data[subject+"档位"] = data.apply(lambda row:compare_grade(row,subject),axis=1)data[subject+"责任教师"] = np.where(data[subject+"档位"]!="",data.apply(lambda row:f"{row["班级"]}班{subject}",axis=1),None)for i in columns_list:if i in subjects:single_subject_analysis(i)#-----------------------
result_folder = "数据处理文件夹"
os.makedirs(result_folder,exist_ok=True)
file_path = os.path.join(result_folder,"前一百全科.xlsx")
data.to_excel(file_path,index=False)
file_name = [file_path]
for i in columns_list:if i in subjects:single_df = data[["班级","姓名","总分","总分校名","单科合理区间","单科A档区间","单科B档区间","单科C档区间","单科D档区间","单科E档区间",i,i+"校名",i+"档位",i+"责任教师"]] filename = i+"单科分析.xlsx"file_path = os.path.join(result_folder,filename)single_df.to_excel(file_path,index=False)file_name.append(file_path)
#至此所有文件已经生成#对文件进行润色--------------
#----------------------------------------------------------------对列进行染色
def color_specific_column(file_path, color, column_name):workbook = load_workbook(filename=file_path)sheet = workbook.activeheader_row = next(sheet.iter_rows(min_row=1, max_row=1))column_index = Nonefor cell in header_row:if cell.value == column_name:column_index = cell.columnbreakif column_index is not None:for row in sheet.iter_rows(min_row=2):  # 从第二行开始染色cell = row[column_index - 1]  # 注意列索引从0开始,而列号从1开始cell.fill = PatternFill(start_color=color, end_color=color, fill_type="solid")workbook.save(filename=file_path)def process_excel_files_with_columns(folder_path, color, column_names):file_paths = glob.glob(os.path.join(folder_path, "*.xlsx"))for file_path in file_paths:for i in range(len(column_names)):color_specific_column(file_path, color, column_names[i])# 示例用法
folder_path = r"C:\Users\xxxxxx\Desktop\成绩\数据处理文件夹"  # 文件夹路径
column_names = ["单科合理区间", "单科A档区间", "单科B档区间", "单科C档区间", "单科D档区间", "单科E档区间"]
colors = ["00FFCC99","00FF99CC","00FFFF99","0099CCFF","00CCFFFF","00FFFFCC"]
for i in range(6):process_excel_files_with_columns(folder_path, colors[i], [column_names[i]])#--------------------------------------------------------------------------对字母进行染色
def color_specific_columns(file_path, colors):workbook = load_workbook(filename=file_path)sheet = workbook.activetarget_values = ["A", "B", "C", "D", "E"]for row in sheet.iter_rows():for cell in row:if cell.value in target_values:fill_color = colors[target_values.index(cell.value) % len(colors)]cell.fill = PatternFill(start_color=fill_color, end_color=fill_color, fill_type="solid")workbook.save(filename=file_path)def process_excel_files_with_columns(folder_path, colors):file_paths = glob.glob(os.path.join(folder_path, "*.xlsx"))for file_path in file_paths:color_specific_columns(file_path, colors)# 示例用法
folder_path = r"C:\Users\lxxxxxx\Desktop\成绩\数据处理文件夹"  # 文件夹路径
colors = ["00FF99CC","00FFFF99","0099CCFF","00CCFFFF","00FFFFCC"]
process_excel_files_with_columns(folder_path, colors)

6.修改细节

将这个地址复制为你要分析的excel文件,例如

win11电脑如下

win10电脑如下

粘贴上去就好了

excel表格要求如下:

长这样的就ok了,每个都是一列

7.涂色方面的文件夹

这两个地方在\数据处理文件夹之前改为成绩文件夹所在位置

格式为:复制的东西\数据处理文件夹

8.选择内核

找到python 3.12.0

然后点击全部运行就好了

然后可能还会出现这种报错

这里显示No module named 'xxxxxxx' 这里代表的是却xxxx

你就在刚才win+r然后输入cmd打开的地方输入

pip install xxxxxx -i https://pypi.tuna.tsinghua.edu.cn/simple some-package  就好了将xxxx替换

最后生成出来的文件分析在这里

出来成果长这样

然后还有提取单科的

这篇关于前一百成绩分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/668059

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置