蓝桥杯算法赛第4场小白入门赛强者挑战赛

2024-02-01 12:04

本文主要是介绍蓝桥杯算法赛第4场小白入门赛强者挑战赛,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

蓝桥杯算法赛第4场小白入门赛&强者挑战赛

  • 小白1
  • 小白2
  • 小白3
  • 强者1
  • 小白4强者2
  • 小白5强者3
  • 小白6强者4
  • 强者5
  • 强者6

链接:
第 4 场 小白入门赛
第 4 场 强者挑战赛

小白1

直接用C++内置函数即可。

#include <bits/stdc++.h>
using namespace std;#include <bits/extc++.h>
using namespace __gnu_pbds;using llt = long long;
using Real = double;
using vi = vector<int>;int main(){
#ifndef ONLINE_JUDGEfreopen("z.txt", "r", stdin);
#endifios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(0);cout << __builtin_popcount(2024) << endl;return 0;
}

小白2

做个字典即可。

import os
import sys
p = {'yuanxing':1, 'zhengfangxing':2, 'changfangxing':3, 'sanjiaoxing':4, 'tuoyuanxing':5, 'liubianxing':6}n = int(input())
a = input().split()
ans = 0
for i in a:ans += p[i]
print(ans)

小白3

经典的NIM问题。当异或和为零时,先手必败。所以当石子数量为偶数时,分成两堆即可。当数量为奇数时,无论怎么分,最低位的1不可能异或为零,也就是说异或和必不为零,先手必胜。

#include <iostream>
using namespace std;
int main()
{int n; cin >> n;cout << (n % 2 == 0 ? "B" : "A") << "\n"; return 0;
}

强者1

很明显的贪心,无论轮到谁取,均取当前最大的数即可。

#include <bits/stdc++.h>
using namespace std;#include <bits/extc++.h>
using namespace __gnu_pbds;using llt = long long;
using Real = double;
using vi = vector<int>;
using pii = pair<int, int>;int N;
vi A;void proc(){    sort(A.begin(), A.end(), greater<int>());llt a[2] = {0};int o = 0;for(int i=1;i<N;i+=2){a[o] += A[i - 1];a[o ^ 1] += A[i];o ^= 1;}cout << a[0] << " " << a[1] << endl;
}int main(){
#ifndef ONLINE_JUDGEfreopen("z.txt", "r", stdin);
#endifios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(0);cin >> N;A.assign(N, {});for(auto & i : A) cin >> i;proc();return 0;
}

小白4强者2

抽屉原理。因为总取值范围为36500,所以当取数数量超过100时,必然有两个数之差在365及其以内。当数量不超过100时,排序以后逐个检验一下即可。

#include <bits/stdc++.h>
using namespace std;#include <bits/extc++.h>
using namespace __gnu_pbds;using llt = long long;
using Real = double;
using vi = vector<int>;int N;
int Q;
vi A;const array<string, 2> ANS = {"NO", "YES"};int proc(int s, int e){if(e >= s + 100) return 1;vi vec(A.begin() + s, A.begin() + e + 1);sort(vec.begin(), vec.end());for(int i=1,n=vec.size();i<n;++i){if(vec[i] - vec[i - 1] <= 365) return 1;}return 0;
}int main(){
#ifndef ONLINE_JUDGEfreopen("z.txt", "r", stdin);
#endifios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(0);cin >> N >> Q;A.assign(N, {});for(auto & i : A) cin >> i;for(int s,e,q=1;q<=Q;++q){cin >> s >> e;cout << ANS[proc(s - 1, e - 1)] << "\n"; }return 0;
}

小白5强者3

逆序对树状数组相关。首先把二元组的数组计算出来,每个元素是 ( i , P A i ) (i, P_{A_i}) (i,PAi)。这个很容易计算。将二元组数组看做是 ( x , y ) (x,y) (x,y)的数组,所以该题的条件其实就是一个二维偏序的条件,即两个维度都要小。然后该题本质上就是对每一个点 ( x i , y i ) (x_i,y_i) (xi,yi)求:
c i × x + i − ∑ j 是 i 左下的点 x j c_i\times{x+i} - \sum_{j是i左下的点}{x_j} ci×x+iji左下的点xj

其中 c i c_i ci是位于 i i i点左下的所有点的数量。

弄两个树状数组,记作b1和b2,则对每一个点 ( x , y ) (x,y) (x,y):

  • 在b1中查询[1, y)的和,该和表示一共有多少个点位于左下,记作c
  • 在b2中查询[1, y)的和,该和表示左下点x坐标之和, 记作s
  • 然后将 c * x - s 累加进去即可
  • 然后将 b1[y] 加 1, b2[y] 加 x 即可
#include <bits/stdc++.h>
using namespace std;#include <bits/extc++.h>
using namespace __gnu_pbds;using llt = long long;
using Real = double;
using vi = vector<int>;struct FenwickTree{ // 树状数组using value_type = long long int;
using vec_type = vector<value_type>;int n;
vec_type c;FenwickTree() = default;static int lowbit(int x){return x & -x;}void init(int nn){this->c.assign((this->n=nn) + 1, 0);}void modify(int pos, value_type delta){for(int i=pos;i<=this->n;i+=lowbit(i)) this->c[i] += delta;
}value_type query(int pos)const{value_type ans = 0;for(int i=pos;i;i-=lowbit(i)) ans += this->c[i];return ans;
}value_type query(int s, int e)const{return this->query(e) - this->query(s - 1);}}Bt1, Bt2;using pii = pair<int, int>;int N;
vi A, B;void input(vi & v, int n){v.assign(n, {});for(auto & i : v) cin >> i;
}llt proc(){vi pos(N + 1, {});for(int i=0;i<N;++i) pos[B[i]] = i;vector<pair<int, int>> vec(N);for(int i=0;i<N;++i){vec[i] = {i + 1, pos[A[i]] + 1};}// sort(vec.begin(), vec.end(), [](pii a, pii b){return a.second < b.second;});llt ans = 0;Bt1.init(N); Bt2.init(N);for(int i=0;i<N;++i){auto k = vec[i].first;auto v = vec[i].second;auto c = Bt1.query(v);Bt1.modify(v, 1);auto s = Bt2.query(v);Bt2.modify(v, k);ans += c * k - s;}return ans;
}int main(){
#ifndef ONLINE_JUDGEfreopen("z.txt", "r", stdin);
#endifios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(0);cin >> N;input(A, N); input(B, N);cout << proc() << endl;return 0;
}

小白6强者4

概率推公式。有 N N N个格子,第 i i i格有 P i P_i Pi的概率到下一格(第 N N N格的下一格是第1格),有 1 − P i 1-P_i 1Pi的概率就此停止。问每一格最终停下的概率,以及对这些概率排序。

对于第1格而言,有 1 − P 1 1-P_1 1P1的概率直接停下,或者转一圈回来以后再以 1 − P 1 1-P_1 1P1的概率,或者转二圈再以 1 − P 1 1-P_1 1P1的概率,……;
对于第2格而言,首先要到达第2格,这个概率是 P 1 P_1 P1,然后剩下的推导类似;
所以,首先令
Π = ∏ i = 1 N P i \Pi=\prod_{i=1}^{N}{P_i} Π=i=1NPi
即转一圈的概率。

对第 i i i格,停止在此的概率是:
Q i = P 1 × P 2 × ⋯ × P i − 1 × ( 1 − P i ) × ( 1 + Π + Π 2 + Π 3 + ⋯ ) = P 1 × P 2 × ⋯ × P i − 1 × ( 1 − P i ) × 1 1 − Π Q_i=P_1\times{P_2}\times\cdots\times{P_{i-1}}\times{(1-P_i)}\times\big(1+\Pi+\Pi^2+\Pi^3+\cdots\big)=P_1\times{P_2}\times\cdots\times{P_{i-1}}\times{(1-P_i)}\times\frac{1}{1-\Pi} Qi=P1×P2××Pi1×(1Pi)×(1+Π+Π2+Π3+)=P1×P2××Pi1×(1Pi)×1Π1

如果不考虑求逆的时间,在 O ( N ) O(N) O(N)内即可求出上述每一个 Q i Q_i Qi

然后考虑排序,这个比较麻烦,因为要比较概率本身,而不能比较取模以后的数。

考虑 Q i Q_i Qi Q j Q_j Qj比较大小,不失一般性,假设 i < j i\lt{j} i<j。则
Q j = P 1 × P 2 × ⋯ × P i − 1 × ( 1 − P i ) × 1 1 − Π Q_j=P_1\times{P_2}\times\cdots\times{P_{i-1}}\times{(1-P_i)}\times\frac{1}{1-\Pi} Qj=P1×P2××Pi1×(1Pi)×1Π1
Q j = P 1 × P 2 × ⋯ × P i − 1 × P i × ⋯ × ( 1 − P j ) × 1 1 − Π Q_j=P_1\times{P_2}\times\cdots\times{P_{i-1}}\times{P_i}\times\cdots\times{(1-P_j)}\times\frac{1}{1-\Pi} Qj=P1×P2××Pi1×Pi××(1Pj)×1Π1

首先讨论特殊情况:

  1. P i , P j P_i,P_j Pi,Pj全为1时,即不可能停在此2格,停下的概率为零,根据题意, i i i应该排在前面;
  2. P i , P j P_i,P_j Pi,Pj任意为1时,可知一个停下的概率为零,另一个不为零,则大小关系可以确定。

然后讨论一般情况,即二者全不为1时。可以证明 Q i ≥ Q j Q_i\ge{Q_j} QiQj

Q i ≥ Q j ⇔ P 1 × P 2 × ⋯ × P i − 1 × ( 1 − P i ) × 1 1 − Π ≥ P 1 × P 2 × ⋯ × P i − 1 × P i × ⋯ × ( 1 − P j ) × 1 1 − Π ⇔ 1 − P i ≥ P i × ⋯ × ( 1 − P j ) \begin{aligned} Q_i\ge{Q_j} &\Leftrightarrow{P_1\times{P_2}\times\cdots\times{P_{i-1}}\times{(1-P_i)}\times\frac{1}{1-\Pi}}\ge{P_1\times{P_2}\times\cdots\times{P_{i-1}}\times{P_i}\times\cdots\times{(1-P_j)}\times\frac{1}{1-\Pi}}\\ &\Leftrightarrow{1-P_i}\ge{{P_i}\times\cdots\times{(1-P_j)}} \end{aligned} QiQjP1×P2××Pi1×(1Pi)×1Π1P1×P2××Pi1×Pi××(1Pj)×1Π11PiPi××(1Pj)
对最后一个不等式的右边做缩放,只需证明
1 − P i ≥ P i × ( 1 − P j ) (*) {1-P_i}\ge{{P_i}\times{(1-P_j)}}\tag{*} 1PiPi×(1Pj)(*)
即可

( ∗ ) (*) ()等价于
1 − 2 P i + P i P j ≥ 0 1-2P_i+P_{i}P_j\ge{0} 12Pi+PiPj0

注意到题目给出的概率的形式,当 P i P_i Pi不为1时,必有 P i ≤ 1 2 P_i\le{\frac{1}{2}} Pi21成立。因此最后一个不等式是成立的,从而可知 i i i要排在 j j j前面。

于是得到了一个不必计算概率的具体值就能排序的准则, s o r t sort sort一下即可。

#include <bits/stdc++.h>
using namespace std;#include <bits/extc++.h>
using namespace __gnu_pbds;using llt = long long;
using Real = double;
using vi = vector<int>;llt const MOD = 998244353;llt qpow(llt a, llt n){llt r = 1;while(n){if(n & 1) r = r * a % MOD;a = a * a % MOD;n >>= 1;}return r;
}llt inv(llt a){return qpow(a, MOD-2LL);}int N;
vector<llt> P;llt myhash(const vector<llt> & vec){llt ans = 0;llt k = 0;for(auto i : vec){ans = (ans + (++k) * i % MOD) % MOD;}return ans;
}void proc(){auto tmp = accumulate(P.begin(), P.end(), 0LL);auto pi = inv(qpow(2LL, tmp));auto fenmu = inv((MOD + 1 - pi) % MOD);vector<llt> ans(N);llt fenzi = 1;for(int i=0;i<N;++i){auto p = inv(qpow(2, P[i]));auto q = (MOD + 1 - p) % MOD;ans[i] = fenzi * q % MOD * fenmu % MOD;fenzi = fenzi * p % MOD;}vector<llt> rank(N);for(int i=0;i<N;++i) rank[i] = i + 1;sort(rank.begin(), rank.end(), [&](int i, int j){i -= 1, j -= 1;if(0 == P[i]){ // 100%会走,即停到此处的概率为0if(0 == P[j]) return i < j; return false; // 停在j的概率肯定比i大}if(0 == P[j]) return true;return i < j;});cout << myhash(ans) << endl;cout << myhash(rank) << endl;return;
}int main(){
#ifndef ONLINE_JUDGEfreopen("z.txt", "r", stdin);
#endifios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(0);cin >> N;P.assign(N, {});for(auto & i : P) cin >> i;proc();return 0;
}

强者5

预处理加 D P DP DP

注意到题目强调了每个用户是独立的,因此首先做一个预处理,计算出二维数组 U s e r 2 G a i n User2Gain User2Gain U s e r 2 G a i n [ i ] [ j ] User2Gain[i][j] User2Gain[i][j]表示如果给第 i i i个用户分配 j j j个空间,其收益是多少。收益等于M - 缺页中断数。(为什么要减一下计算收益,因为笔者最开始弄错了,以为是一个分组背包,所以减一下刚好可以计算最大收益)

U s e r 2 G a i n User2Gain User2Gain辅助以数据结构应该比较容易算出来。假设用户的请求数量平均分配为 M / K M/K M/K个,则预处理时间应该是 O ( K × M k log ⁡ M K ) O(K\times\frac{M}{k}\log{\frac{M}{K}}) O(K×kMlogKM),最差情况可能是 O ( M log ⁡ M ) O(M\log{M}) O(MlogM)。不太确定这个复杂度对不对。

接下来 D P DP DP,令 D i , j D_{i,j} Di,j表示前 i i i个用户分配 j j j个空间所能获得的最大收益,则
D i , j = max ⁡ ( D i − 1 , k + U s e r 2 G a i n [ i ] [ j − k ] , k ∈ [ 0 , j ] ) D_{i,j}=\max(D_{i-1,k}+User2Gain[i][j-k],k\in{[0,j]}) Di,j=max(Di1,k+User2Gain[i][jk],k[0,j])

算出最大收益,再减回来就得到了最小的缺页数。

上述计算要三重循环,看起来是立方的,但实际上不是。考虑到每个用户平均分配到 M K \frac{M}{K} KM个空间,因此,第1个用户只需计算到 M K \frac{M}{K} KM,第2个用户只需计算到 2 M K \frac{2M}{K} K2M,第3个用户到 3 M K \frac{3M}{K} K3M,……

实际计算次数是
( M K + 2 M K + 3 M K + ⋯ + K M K ) × M K ≡ O ( M 2 ) \big(\frac{M}{K}+\frac{2M}{K}+\frac{3M}{K}+\cdots+\frac{KM}{K}\big)\times{\frac{M}{K}}\equiv{O(M^2)} (KM+K2M+K3M++KKM)×KMO(M2)

这似乎也是最差情况。同样不保证这个复杂度分析一定对,感觉没错。

#include <bits/stdc++.h>
using namespace std;#include <bits/extc++.h>
using namespace __gnu_pbds;using llt = long long;
using Real = double;
using vi = vector<int>;
using pii = pair<int, int>;__gnu_pbds::priority_queue<pii, function<bool(const pii &, const pii &)>> Q([](const pii & a, const pii & b){assert(a.second != b.second);return a.second < b.second;
});int N, K, M;
vector<pii> Req;
vi Lisan;
vector<vi> User2Gain;
vector<vi> D;int proc(const vi & req, int alloc){map<int, pair<vi, int>> req2pos;for(int i=0;i<req.size();++i) req2pos[req[i]].first.emplace_back(i);Q.clear();int k = 1;for(auto & p : req2pos){p.second.second = 0;p.second.first.emplace_back(M + M + k++);}vi flag(M + 1, 0);int ans = 0;int used = 0;for(int i=0;i<req.size();++i){auto r = req[i];if(0 == flag[r]){ans += 1;if(used < alloc){used += 1;}else{while(1){auto h = Q.top();Q.pop();if(h.second > i){flag[h.first] = 0;break;}}}}flag[r] = 1;auto & mm = req2pos[r];Q.push({r, mm.first[++mm.second]});}return ans;
}void proc(const vi & req, vi & gain){vi flag(M + 1, 0);int n = 0;for(auto i : req){if(flag[i] == 0){flag[i] = 1;n += 1;}}if(n > N) n = N;gain.assign(n + 1, 0);gain[0] = M - req.size();for(int i=1;i<=n;++i){gain[i] = M - proc(req, i);}return;
}int proc(){Lisan.clear(); Lisan.reserve(M + 1);Lisan.emplace_back(0);for(const auto & p : Req) Lisan.emplace_back(p.second);sort(Lisan.begin(), Lisan.end());Lisan.erase(unique(Lisan.begin(), Lisan.end()), Lisan.end());vector<vi> user2req(K + 1, vi());for(auto & p : Req){p.second = lower_bound(Lisan.begin(), Lisan.end(), p.second) - Lisan.begin();user2req[p.first].emplace_back(p.second);}User2Gain.assign(K + 1, vi());for(int i=1;i<=K;++i){proc(user2req[i], User2Gain[i]);// cout << i << ":";// for(auto j : User2Gain[i]){//     cout << " " << M - j;// }// cout << endl;}D.assign(K + 1, vi(N + 1, 0));int total = 0;for(int user=1;user<=K;++user){const auto & gain = User2Gain[user];total += gain.size() - 1;if(total >= N) total = N;for(int space=0;space<=total;++space){int ava = min((int)gain.size() - 1, space);auto & tmp = D[user][space];for(int i=0;i<=ava;++i){tmp = max(tmp, D[user-1][space-i] + gain[i]);}}}int ans = M * K;const auto & vec = D[K];for(int i=0;i<=N;++i){ans = min(ans, M * K - vec[i]);}return ans;
}int main(){
#ifndef ONLINE_JUDGEfreopen("z.txt", "r", stdin);
#endifios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(0);int nofkase = 1;cin >> nofkase;while(nofkase--){cin >> N >> K >> M;Req.assign(M, {});for(auto & p : Req) cin >> p.first >> p.second;cout << proc() << "\n";}return 0;
}

强者6

差分加树状数组。
假设第 i i i个请求和第 j j j个请求是同一个页面,则 j j j有可能命中缓存。取决于 i , j i,j i,j之间不同页面种类的数量与缓存空间的大小关系。为方便论述,称不同页面种类的数量为间隔数。例如:
1 , 2 , 3 , 4 , 2 , 3 , 4 , 1 1,2,3,4,2,3,4,1 1,2,3,4,2,3,4,1

上述两个页面1之间的间隔数为3,所以当缓存空间大于3时,第二个页面1必然是命中的;否则必然有缺页中断。基于简单的贪心可知,如果缓存空间为 K K K时,某个 j j j请求会有缺页中断,则缓存空间更小时,必然也会有缺页中断。因此只需要对相邻的相等页面,求出间隔数即可。这是一个典型的树状数组应用。

A A A数组是页面请求数组, B B B是一个树状数组。pre[v]是数值v在数组 A A A中前一个最近的位置。则:

for i,v in A:求B[pre[v], v]之间的和,记作s, s就是一个间隔数, 令cnt[s] += 1将B[pre[v]] -= 1将B[i] += 1pre[v] = i

由此就得到了每一个间隔数出现的数量,根据此就能算出缺页数(注意到此时,页面是几其实已经不重要)。

计算间隔数应该是 O ( M log ⁡ M ) O(M\log{M}) O(MlogM),根据间隔数计算 A n s Ans Ans应该是 O ( M ) O(M) O(M)

#include <bits/stdc++.h>
using namespace std;#include <bits/extc++.h>
using namespace __gnu_pbds;using llt = long long;
using Real = double;
using vi = vector<int>;
using pii = pair<int, int>;struct FenwickTree{ // 树状数组using value_type = long long int;
using vec_type = vector<value_type>;int n;
vec_type c;FenwickTree() = default;static int lowbit(int x){return x & -x;}void init(int nn){this->c.assign((this->n=nn) + 1, 0);}void modify(int pos, value_type delta){for(int i=pos;i<=this->n;i+=lowbit(i)) this->c[i] += delta;
}value_type query(int pos)const{value_type ans = 0;for(int i=pos;i;i-=lowbit(i)) ans += this->c[i];return ans;
}value_type query(int s, int e)const{return this->query(e) - this->query(s - 1);}}Bt;int M;
vi A;
vi Ans;void proc(){    Bt.init(M);map<int, int> cnt;vi pre(1000000 + 1, 0);for(int p,v,i=0;i<M;++i){p = i + 1;v = A[i];if(pre[v]){Bt.modify(pre[v], -1);cnt[Bt.query(pre[v], p)] += 1;}else{cnt[M] += 1;}        Bt.modify(pre[v] = p, 1);}Ans.assign(M + 1, 0);int sum = 0;int another = M;for(auto it=cnt.rbegin(),jt=++cnt.rbegin(),et=cnt.rend();jt!=et;++it,++jt){int last = it->first;int start = jt->first;sum += it->second;fill(Ans.begin() + start + 1, Ans.begin() + last + 1, sum);}cout << (Ans[0] = M);for(int i=1;i<=M;++i) cout << " " << Ans[i];cout << endl;
}int main(){
#ifndef ONLINE_JUDGEfreopen("z.txt", "r", stdin);
#endifios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(0);cin >> M;A.assign(M, {});for(auto & i : A) cin >> i;proc();return 0;
}

这篇关于蓝桥杯算法赛第4场小白入门赛强者挑战赛的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/667211

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题: