机器学习 低代码 ML:PyCaret 的使用

2024-02-01 06:52

本文主要是介绍机器学习 低代码 ML:PyCaret 的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。
🍎个人主页:小嗷犬的个人主页
🍊个人网站:小嗷犬的技术小站
🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


本文目录

    • PyCaret 简介
    • PyCaret 实践
      • 安装 PyCaret
      • 使用 PyCaret 进行分类任务
      • 使用 PyCaret 进行回归任务


PyCaret 简介

PyCaret 是一个开源的低代码 Python 库,专注于简化机器学习(ML)工作流程并加速实验过程。它特别适用于数据科学家、分析师和开发人员,通过减少实现 ML 解决方案所需的繁琐编码工作来提高工作效率。PyCaret 可以在一个统一且用户友好的接口下提供多种机器学习任务的支持,包括但不限于分类、回归、聚类、异常检测、关联规则挖掘等。

PyCaret

以下是一些关于 PyCaret 的关键特点和功能:

  1. 低代码自动化

    • PyCaret 允许用户通过简洁的 API 调用快速执行数据预处理、特征工程、模型训练、模型评估和模型选择等步骤。
    • 用户无需编写大量的底层代码即可完成复杂的机器学习任务,仅需少量命令就能在几秒钟内搭建和比较多个模型。
  2. 集成多种库

    • 库内部封装了诸如 scikit-learn、XGBoost、LightGBM、CatBoost 等流行机器学习框架,并提供了对这些库中模型的便捷访问和管理。
    • 同时也集成了其他辅助工具,如用于文本处理的 spaCy,以及用于超参数优化的 Optuna、Hyperopt 等。
  3. 模块化设计

    • PyCaret 按照不同机器学习任务划分为不同的模块,例如classificationregressionclusteringanomaly_detection等,每个模块都包含了对应任务特定的方法和函数。
  4. 端到端解决方案

    • 提供从数据加载到模型部署的完整生命周期管理,支持项目保存和加载,便于复现实验结果和迁移学习。
    • 包括可视化工具,可以方便地生成各种性能指标图表,帮助用户直观理解模型表现和数据分布。
  5. 资源效率

    • 由于其自动化特性,PyCaret 能够在较小的计算资源消耗下进行大量实验,从而节省时间和计算成本。
  6. 易用性

    • 对于新手友好,使得没有丰富编程经验的数据科学爱好者也能快速入门并开始探索机器学习领域。

使用 PyCaret 进行机器学习实验时,用户通常首先初始化一个环境,设置数据分割策略、目标变量以及其他实验参数,然后就可以直接运行对比试验、调整模型配置、进行特征重要性分析等操作。这一系列过程极大提升了数据分析和建模的工作效率。

PyCaret 实践

安装 PyCaret

pip install pycaret

使用 PyCaret 进行分类任务

以 PyCaret 官方提供的 diabetes 数据集为例。

# 加载数据集
from pycaret.datasets import get_data
diabetes = get_data("diabetes")

diabetes 数据集

# 初始化分类实验
from pycaret.classification import *
s = setup(data, target="Class variable", session_id=123)

分类实验概况

# 比较多个模型
best = compare_models()

分类模型比较结果

# 打印最佳模型
print(best)

最佳分类模型

# 评估模型
evaluate_model(best)

分类模型评估结果

# 绘制 AUC 曲线
plot_model(best, plot="auc")

AUC 曲线

# 绘制混淆矩阵
plot_model(best, plot="confusion_matrix")

混淆矩阵

# 使用最优模型进行预测
predictions = predict_model(best, data=data)
predictions.head()

分类预测结果

# 输出概率分数
predictions = predict_model(best, data=data, raw_score=True)
predictions.head()

分类概率分数

# 保存模型
save_model(best, "my_best_pipeline")

保存模型

# 加载模型
loaded_model = load_model("my_best_pipeline")
print(loaded_model)

加载模型

使用 PyCaret 进行回归任务

以 PyCaret 官方提供的 insurance 数据集为例。

# 加载数据集
from pycaret.datasets import get_data
insurance = get_data("insurance")

insurance 数据集

# 初始化回归实验
from pycaret.regression import *
s = setup(data, target="charges", session_id=123)

回归实验概况

# 比较多个模型
best = compare_models()

回归模型比较结果

# 打印最佳模型
print(best)

最佳回归模型

# 评估模型
evaluate_model(best)

回归模型评估结果

# 绘制残差分布图
plot_model(best, plot="residuals")

残差分布图

# 绘制特征重要性图
plot_model(best, plot="feature")

特征重要性图

# 使用最优模型进行预测
predictions = predict_model(best, data=data)
predictions.head()

回归预测结果

这篇关于机器学习 低代码 ML:PyCaret 的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/666436

相关文章

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected