机器学习 低代码 ML:PyCaret 的使用

2024-02-01 06:52

本文主要是介绍机器学习 低代码 ML:PyCaret 的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。
🍎个人主页:小嗷犬的个人主页
🍊个人网站:小嗷犬的技术小站
🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


本文目录

    • PyCaret 简介
    • PyCaret 实践
      • 安装 PyCaret
      • 使用 PyCaret 进行分类任务
      • 使用 PyCaret 进行回归任务


PyCaret 简介

PyCaret 是一个开源的低代码 Python 库,专注于简化机器学习(ML)工作流程并加速实验过程。它特别适用于数据科学家、分析师和开发人员,通过减少实现 ML 解决方案所需的繁琐编码工作来提高工作效率。PyCaret 可以在一个统一且用户友好的接口下提供多种机器学习任务的支持,包括但不限于分类、回归、聚类、异常检测、关联规则挖掘等。

PyCaret

以下是一些关于 PyCaret 的关键特点和功能:

  1. 低代码自动化

    • PyCaret 允许用户通过简洁的 API 调用快速执行数据预处理、特征工程、模型训练、模型评估和模型选择等步骤。
    • 用户无需编写大量的底层代码即可完成复杂的机器学习任务,仅需少量命令就能在几秒钟内搭建和比较多个模型。
  2. 集成多种库

    • 库内部封装了诸如 scikit-learn、XGBoost、LightGBM、CatBoost 等流行机器学习框架,并提供了对这些库中模型的便捷访问和管理。
    • 同时也集成了其他辅助工具,如用于文本处理的 spaCy,以及用于超参数优化的 Optuna、Hyperopt 等。
  3. 模块化设计

    • PyCaret 按照不同机器学习任务划分为不同的模块,例如classificationregressionclusteringanomaly_detection等,每个模块都包含了对应任务特定的方法和函数。
  4. 端到端解决方案

    • 提供从数据加载到模型部署的完整生命周期管理,支持项目保存和加载,便于复现实验结果和迁移学习。
    • 包括可视化工具,可以方便地生成各种性能指标图表,帮助用户直观理解模型表现和数据分布。
  5. 资源效率

    • 由于其自动化特性,PyCaret 能够在较小的计算资源消耗下进行大量实验,从而节省时间和计算成本。
  6. 易用性

    • 对于新手友好,使得没有丰富编程经验的数据科学爱好者也能快速入门并开始探索机器学习领域。

使用 PyCaret 进行机器学习实验时,用户通常首先初始化一个环境,设置数据分割策略、目标变量以及其他实验参数,然后就可以直接运行对比试验、调整模型配置、进行特征重要性分析等操作。这一系列过程极大提升了数据分析和建模的工作效率。

PyCaret 实践

安装 PyCaret

pip install pycaret

使用 PyCaret 进行分类任务

以 PyCaret 官方提供的 diabetes 数据集为例。

# 加载数据集
from pycaret.datasets import get_data
diabetes = get_data("diabetes")

diabetes 数据集

# 初始化分类实验
from pycaret.classification import *
s = setup(data, target="Class variable", session_id=123)

分类实验概况

# 比较多个模型
best = compare_models()

分类模型比较结果

# 打印最佳模型
print(best)

最佳分类模型

# 评估模型
evaluate_model(best)

分类模型评估结果

# 绘制 AUC 曲线
plot_model(best, plot="auc")

AUC 曲线

# 绘制混淆矩阵
plot_model(best, plot="confusion_matrix")

混淆矩阵

# 使用最优模型进行预测
predictions = predict_model(best, data=data)
predictions.head()

分类预测结果

# 输出概率分数
predictions = predict_model(best, data=data, raw_score=True)
predictions.head()

分类概率分数

# 保存模型
save_model(best, "my_best_pipeline")

保存模型

# 加载模型
loaded_model = load_model("my_best_pipeline")
print(loaded_model)

加载模型

使用 PyCaret 进行回归任务

以 PyCaret 官方提供的 insurance 数据集为例。

# 加载数据集
from pycaret.datasets import get_data
insurance = get_data("insurance")

insurance 数据集

# 初始化回归实验
from pycaret.regression import *
s = setup(data, target="charges", session_id=123)

回归实验概况

# 比较多个模型
best = compare_models()

回归模型比较结果

# 打印最佳模型
print(best)

最佳回归模型

# 评估模型
evaluate_model(best)

回归模型评估结果

# 绘制残差分布图
plot_model(best, plot="residuals")

残差分布图

# 绘制特征重要性图
plot_model(best, plot="feature")

特征重要性图

# 使用最优模型进行预测
predictions = predict_model(best, data=data)
predictions.head()

回归预测结果

这篇关于机器学习 低代码 ML:PyCaret 的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/666436

相关文章

使用Python自建轻量级的HTTP调试工具

《使用Python自建轻量级的HTTP调试工具》这篇文章主要为大家详细介绍了如何使用Python自建一个轻量级的HTTP调试工具,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录一、为什么需要自建工具二、核心功能设计三、技术选型四、分步实现五、进阶优化技巧六、使用示例七、性能对比八、扩展方向建

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Linux中的计划任务(crontab)使用方式

《Linux中的计划任务(crontab)使用方式》:本文主要介绍Linux中的计划任务(crontab)使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言1、linux的起源与发展2、什么是计划任务(crontab)二、crontab基础1、cro

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

C++中std::distance使用方法示例

《C++中std::distance使用方法示例》std::distance是C++标准库中的一个函数,用于计算两个迭代器之间的距离,本文主要介绍了C++中std::distance使用方法示例,具... 目录语法使用方式解释示例输出:其他说明:总结std::distance&n编程bsp;是 C++ 标准

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.