Flink CEP实现10秒内连续登录失败用户分析

2024-01-31 08:12

本文主要是介绍Flink CEP实现10秒内连续登录失败用户分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、什么是CEP?

Flink CEP即 Flink Complex Event Processing,是基于DataStream流式数据提供的一套复杂事件处理编程模型。你可以把他理解为基于无界流的一套正则匹配模型,即对于无界流中的各种数据(称为事件),提供一种组合匹配的功能。

在这里插入图片描述
上图中,以不同形状代表一个DataStream中不同属性的事件。以一个圆圈和一个三角组成一个Pattern后,就可以快速过滤出原来的DataStream中符合规律的数据。举个例子,比如很多网站需要对恶意登录的用户进行屏蔽,如果用户连续三次输入错误的密码,那就要锁定当前用户。在这个场景下,所有用户的登录行为就构成了一个无界的数据流DataStream。而连续三次登录失败就是一个匹配模型Pattern。CEP编程模型的功能就是从用户登录行为这个无界数据流DataStream中,找出符合这个匹配模Pattern的所有数据。这种场景下,使用我们前面介绍的各种DataStream API其实也是可以实现的,不过相对就麻烦很多。而CEP编程模型则提供了非常简单灵活的功能实现方式。

2、代码实现

2.1 引入maven依赖:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>com.roy</groupId><artifactId>FlinkDemo</artifactId><version>1.0</version><properties><flink.version>1.12.5</flink.version><maven.compiler.source>1.8</maven.compiler.source><maven.compiler.target>1.8</maven.compiler.target><log4j.version>2.12.1</log4j.version></properties><dependencies><dependency><groupId>org.apache.flink</groupId><artifactId>flink-java</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients_2.12</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-java_2.12</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-api-java-bridge_2.12</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-planner-blink_2.12</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-common</artifactId><version>${flink.version}</version></dependency><!-- CEP主要是下面这个依赖 --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-cep_2.12</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-statebackend-rocksdb_2.12</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-shaded-hadoop-2-uber</artifactId><version>2.8.3-10.0</version></dependency><dependency><groupId>log4j</groupId><artifactId>log4j</artifactId><version>1.2.14</version></dependency></dependencies><build><plugins><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-assembly-plugin</artifactId><version>3.1.0</version><configuration><descriptorRefs><descriptorRef>jar-with-dependencies</descriptorRef></descriptorRefs></configuration><executions><execution><id>make-assembly</id><phase>package</phase><goals><goal>single</goal></goals></execution></executions></plugin></plugins></build></project>

2.2 基本流程

//1、获取原始事件流
DataStream<Event> input = ......; 
//2、定义匹配器
Pattern<Event,?> pattern = .......; 
//3、获取匹配流
PatternStream<Event> patternStream = CEP.pattern(input, pattern);
//4、将匹配流中的数据处理形成结果数据流
DataStream<Result> resultStream = patternStream.process(new PatternProcessFunction<Event, Result>() {@Overridepublic void processMatch(Map<String, List<Event>> pattern,Context ctx,Collector<Result> out) throws Exception {}
});

2.3 完整代码

注意:代码运行前,先启动2.4 nlk socket服务

package com.roy.flink.project.userlogin;import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.cep.CEP;
import org.apache.flink.cep.PatternStream;
import org.apache.flink.cep.functions.PatternProcessFunction;
import org.apache.flink.cep.pattern.Pattern;
import org.apache.flink.cep.pattern.conditions.SimpleCondition;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;import java.time.Duration;
import java.util.List;
import java.util.Map;/*** @desc 十秒内连续登录失败的用户分析。使用Flink CEP进行快速模式匹配*/
public class MyUserLoginAna {public static void main(String[] args) throws Exception {final StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();// //BoundedOutOfOrdernessWatermarks定时提交Watermark的间隔env.getConfig().setAutoWatermarkInterval(1000L);// 使用Socket测试env.setParallelism(1);// 1、获取原始事件流(10.86.97.206改为实际地址)final DataStreamSource<String> dataStreamSource = env.socketTextStream("10.86.97.206",7777);final SingleOutputStreamOperator<UserLoginRecord> userLoginRecordStream = dataStreamSource.map(new MapFunction<String, UserLoginRecord>() {@Overridepublic UserLoginRecord map(String s) throws Exception {final String[] splitVal = s.split(",");return new UserLoginRecord(splitVal[0], Integer.parseInt(splitVal[1]), Long.parseLong(splitVal[2]));}}).assignTimestampsAndWatermarks(WatermarkStrategy.<UserLoginRecord>forBoundedOutOfOrderness(Duration.ofSeconds(1))// 主要针对乱序流,由于乱序流中需要等待迟到数据到齐,所以必须设置一个固定量的延迟时间.withTimestampAssigner((SerializableTimestampAssigner<UserLoginRecord>) (element, recordTimestamp) -> element.getLoginTime()));// 2、定义匹配器// 2.1:10秒内出现3次登录失败的记录(不一定连续)// Flink CEP定义消息匹配器。
//        final Pattern<UserLoginRecord, UserLoginRecord> pattern = Pattern.<UserLoginRecord>begin("start").where(new SimpleCondition<UserLoginRecord>() {
//            @Override
//            public boolean filter(UserLoginRecord userLoginRecord) throws Exception {
//                return 1 == userLoginRecord.getLoginRes();
//            }
//        }).times(3).within(Time.seconds(10));// 2.2:连续三次登录失败。next表示连续匹配。 不连续匹配使用followByfinal Pattern<UserLoginRecord, UserLoginRecord> pattern = Pattern.<UserLoginRecord>begin("one").where(new SimpleCondition<UserLoginRecord>() {@Overridepublic boolean filter(UserLoginRecord value) throws Exception {return 1 == value.getLoginRes();}}).next("two").where(new SimpleCondition<UserLoginRecord>() {@Overridepublic boolean filter(UserLoginRecord value) throws Exception {return 1 == value.getLoginRes();}}).next("three").where(new SimpleCondition<UserLoginRecord>() {@Overridepublic boolean filter(UserLoginRecord value) throws Exception {return 1 == value.getLoginRes();}}).within(Time.seconds(10));// 3、获取匹配流final PatternStream<UserLoginRecord> badUser = CEP.pattern(userLoginRecordStream, pattern);final MyProcessFunction myProcessFunction = new MyProcessFunction();// 4、将匹配流中的数据处理成结果数据流final SingleOutputStreamOperator<UserLoginRecord> badUserStream = badUser.process(myProcessFunction);badUserStream.print("badUser");env.execute("UserLoginAna");}// mainpublic static class MyProcessFunction extends PatternProcessFunction<UserLoginRecord,UserLoginRecord>{@Overridepublic void processMatch(Map<String, List<UserLoginRecord>> match, Context ctx, Collector<UserLoginRecord> out) throws Exception {// 针对2.1 连续3次登录失败
//            final List<UserLoginRecord> records = match.get("start");
//            for(UserLoginRecord record : records){
//                out.collect(record);
//            }// 针对2.2 非连续3次登录失败final List<UserLoginRecord> records = match.get("three");for(UserLoginRecord record : records){out.collect(record);}}// processMarch}// MyProcessFunction
}

UserLoginRecord对象,如下:


public class UserLoginRecord {private String userId;private int loginRes; // 0-成功, 1-失败private long loginTime;public UserLoginRecord() {}public UserLoginRecord(String userId, int loginRes, long loginTime) {this.userId = userId;this.loginRes = loginRes;this.loginTime = loginTime;}@Overridepublic String toString() {return "UserLoginRecord{" +"userId='" + userId + '\'' +", loginRes=" + loginRes +", loginTime=" + loginTime +'}';}public String getUserId() {return userId;}public void setUserId(String userId) {this.userId = userId;}public int getLoginRes() {return loginRes;}public void setLoginRes(int loginRes) {this.loginRes = loginRes;}public long getLoginTime() {return loginTime;}public void setLoginTime(long loginTime) {this.loginTime = loginTime;}
}

2.4 nlk模拟socket服务端

在这里插入图片描述

2.5 IDEA控制台打印

在这里插入图片描述

这篇关于Flink CEP实现10秒内连续登录失败用户分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/663111

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景