米哈游(原神)终面算法原题

2024-01-31 06:28

本文主要是介绍米哈游(原神)终面算法原题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

恒大正式破产

准确来说,是中国恒大(恒大汽车、恒大物业已于 2024-01-30 复牌)。

恒大破产,注定成为历史的注目焦点。

作为首个宣布破产的房地产企业,恒大的破产规模也创历史新高。

房地产作为推动中国三分之一经济增长的行业,恒大是当中毫无疑问的佼佼者。

能够成就这样的巨无霸,自然是有时代和政策因素的。

在房地产行业的上升周期中,房企普遍的高杠杆率和过度扩张如今成为一种"回旋镖",对各个层面都产生了影响。

即使你和我一样,家里没有几套房,没有买恒大的LW楼,也没有持有恒大系股票,但我们都感受到了这波的消费低迷和各行业的裁员潮,这与房地产去泡沫化不无关系。

中国楼市基本对标美国股市,当一个国家的重要经济载体出现问题(失去信心),普通人不可能独善其身。

当然了,最幸福的人不会变。

仍然是那些无论房地产高歌猛进还是岌岌可危,都自诩与他无关的人(他觉得自己不考虑买房嘛,能有啥关系)。

我相信这批人,和看到《游戏意见稿》就只讨论「该不该给氪金游戏充值」是同一批人。

随他们去吧。

...

回归主线。

自上次写了米哈游的一面原题和变形题之后,又有读者来投稿了。

据说,这次是米哈游(原神)终面算法题

看着确实像,因为这是一道适合「由浅入深」的题目,适合在面试过程中有来有回。

启动!

题目描述

平台:LeetCode

题号:215

给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。

请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。

你必须设计并实现时间复杂度为 的算法解决此问题。

示例 1:

输入: [3,2,1,5,6,4], k = 2

输出: 5

示例 2:

输入: [3,2,3,1,2,4,5,5,6], k = 4

输出: 4

提示:

值域映射 + 树状数组 + 二分

除了直接对数组进行排序,取第 位的 做法以外。

对于值域大小 小于 数组长度本身时,我们还能使用「树状数组 + 二分」的 做法,其中 为值域大小。

首先值域大小为 ,为了方便,我们为每个 增加大小为 的偏移量,将值域映射到 的空间。

将每个增加偏移量后的 存入树状数组,考虑在 范围内进行二分,假设我们真实第 大的值为 ,那么在以 为分割点的数轴上,具有二段性质:

  • 范围内的数 满足「树状数组中大于等于 的数不低于 个」
  • 范围内的数 不满足「树状数组中大于等于 的数不低于 个」

二分出结果后再减去刚开始添加的偏移量即是答案。

Java 代码:

class Solution {
    int M = 100010, N = 2 * M;
    int[] tr = new int[N];
    int lowbit(int x) {
        return x & -x;
    }
    int query(int x) {
        int ans = 0;
        for (int i = x; i > 0; i -= lowbit(i)) ans += tr[i];
        return ans;
    }
    void add(int x) {
        for (int i = x; i < N; i += lowbit(i)) tr[i]++;
    }
    public int findKthLargest(int[] nums, int k) {
        for (int x : nums) add(x + M);
        int l = 0, r = N - 1;
        while (l < r) {
            int mid = l + r + 1 >> 1;
            if (query(N - 1) - query(mid - 1) >= k) l = mid;
            else r = mid - 1;
        }
        return r - M;
    }
}

C++ 代码:

class Solution {
public:
    int N = 200010, M = 100010, tr[200010];
    int lowbit(int x) {
        return x & -x;
    }
    int query(int x) {
        int ans = 0;
        for (int i = x; i > 0; i -= lowbit(i)) ans += tr[i];
        return ans;
    }
    void add(int x) {
        for (int i = x; i < N; i += lowbit(i)) tr[i]++;
    }
    int findKthLargest(vector<int>& nums, int k) {
        for (int x : nums) add(x + M);
        int l = 0, r = N - 1;
        while (l < r) {
            int mid = l + r + 1 >> 1;
            if (query(N - 1) - query(mid - 1) >= k) l = mid;
            else r = mid - 1;
        }
        return r - M;
    }
};

Python 代码:

class Solution:
    def findKthLargest(self, nums: List[int], k: int) -> int:
        N, M = 200010100010
        tr = [0] * N
        def lowbit(x):
            return x & -x
        def query(x):
            ans = 0
            i = x
            while i > 0:
                ans += tr[i]
                i -= lowbit(i)
            return ans
        def add(x):
            i = x
            while i < N:
                tr[i] += 1
                i += lowbit(i)
        for x in nums:
            add(x + M)
        l, r = 0, N - 1
        while l < r:
            mid = l + r + 1 >> 1
            if query(N - 1) - query(mid - 1) >= k: l = mid
            else: r = mid - 1
        return r - M

TypeScript 代码:

function findKthLargest(nums: number[], k: number): number {
    const N = 200010, M = 100010;
    const tr = new Array(N).fill(0);
    const lowbit = function(x: number): number {
        return x & -x;
    };
    const add = function(x: number): void {
        for (let i = x; i < N; i += lowbit(i)) tr[i]++;
    };
    const query = function(x: number): number {
        let ans = 0;
        for (let i = x; i > 0; i -= lowbit(i)) ans += tr[i];
        return ans;
    };
    for (const x of nums) add(x + M);
    let l = 0, r = N - 1;
    while (l < r) {
        const mid = l + r + 1 >> 1;
        if (query(N - 1) - query(mid - 1) >= k) l = mid;
        else r = mid - 1;
    }
    return r - M;
};
  • 时间复杂度:将所有数字放入树状数组复杂度为 ;二分出答案复杂度为 ,其中 为值域大小。整体复杂度为
  • 空间复杂度:

优先队列(堆)

另外一个容易想到的想法是利用优先队列(堆),由于题目要我们求的是第 大的元素,因此我们建立一个小根堆。

根据当前队列元素个数或当前元素与栈顶元素的大小关系进行分情况讨论:

  • 当优先队列元素不足 个,可将当前元素直接放入队列中;
  • 当优先队列元素达到 个,并且当前元素大于栈顶元素(栈顶元素必然不是答案),可将当前元素放入队列中。

Java 代码:

class Solution {
    public int findKthLargest(int[] nums, int k) {
        PriorityQueue<Integer> q = new PriorityQueue<>((a,b)->a-b);
        for (int x : nums) {
            if (q.size() < k || q.peek() < x) q.add(x);
            if (q.size() > k) q.poll();
        }
        return q.peek();
    }
}

C++ 代码:

class Solution {
public:
    int findKthLargest(vector<int>& nums, int k) {
        priority_queue<intvector<int>, greater<int>> q;
        for (int x : nums) {
            if (q.size() < k || q.top() < x) q.push(x);
            if (q.size() > k) q.pop();
        }
        return q.top();
    }
};

Python 代码:

class Solution:
    def findKthLargest(self, nums: List[int], k: int) -> int:
        q = []
        for x in nums:
            if len(q) < k or q[0] < x:
                heapq.heappush(q, x)
            if len(q) > k:
                heapq.heappop(q)
        return q[0]
  • 时间复杂度:
  • 空间复杂度:

快速选择

对于给定数组,求解第 大元素,且要求线性复杂度,正解为使用「快速选择」做法。

基本思路与「快速排序」一致,每次敲定一个基准值 x,根据当前与 x 的大小关系,将范围在 划分为到两边。

同时利用,利用题目只要求输出第 大的值,而不需要对数组进行整体排序,我们只需要根据划分两边后,第 大数会落在哪一边,来决定对哪边进行递归处理即可。

快速排序模板为面试向重点内容,需要重要掌握。

Java 代码:

class Solution {
    int[] nums;
    int qselect(int l, int r, int k) {
        if (l == r) return nums[k];
        int x = nums[l], i = l - 1, j = r + 1;
        while (i < j) {
            do i++; while (nums[i] < x);
            do j--; while (nums[j] > x);
            if (i < j) swap(i, j);
        }
        if (k <= j) return qselect(l, j, k);
        else return qselect(j + 1, r, k);
    }
    void swap(int i, int j) {
        int c = nums[i];
        nums[i] = nums[j];
        nums[j] = c;
    }
    public int findKthLargest(int[] _nums, int k) {
        nums = _nums;
        int n = nums.length;
        return qselect(0, n - 1, n - k);
    }
}

C++ 代码:

class Solution {
public:
    vector<int> nums;
    int qselect(int l, int r, int k) {
        if (l == r) return nums[k];
        int x = nums[l], i = l - 1, j = r + 1;
        while (i < j) {
            do i++; while (nums[i] < x);
            do j--; while (nums[j] > x);
            if (i < j) swap(nums[i], nums[j]);
        }
        if (k <= j) return qselect(l, j, k);
        else return qselect(j + 1, r, k);
    }
    int findKthLargest(vector<int>& _nums, int k) {
        nums = _nums;
        int n = nums.size();
        return qselect(0, n - 1, n - k);
    }
};

Python 代码:

class Solution:
    def findKthLargest(self, nums: List[int], k: int) -> int:
        def qselect(l, r, k):
            if l == r:
                return nums[k]
            x, i, j = nums[l], l - 1, r + 1
            while i < j:
                i += 1
                while nums[i] < x:
                    i += 1
                j -= 1
                while nums[j] > x:
                    j -= 1
                if i < j:
                    nums[i], nums[j] = nums[j], nums[i]
            if k <= j:
                return qselect(l, j, k)
            else:
                return qselect(j + 1, r, k)

        n = len(nums)
        return qselect(0, n - 1, n - k)

TypeScript 代码:

function findKthLargest(nums: number[], k: number): number {
    const qselect = function(l: number, r: number, k: number): number {
        if (l === r) return nums[k];
        const x = nums[l];
        let i = l - 1, j = r + 1;
        while (i < j) {
            i++;
            while (nums[i] < x) i++;
            j--;
            while (nums[j] > x) j--;
            if (i < j) [nums[i], nums[j]] = [nums[j], nums[i]];
        }
        if (k <= j) return qselect(l, j, k);
        else return qselect(j + 1, r, k);
    };
    const n = nums.length;
    return qselect(0, n - 1, n - k);
};
  • 时间复杂度:期望
  • 空间复杂度:忽略递归带来的额外空间开销,复杂度为

我是宫水三叶,每天都会分享算法题解,并和大家聊聊近期的所见所闻。

欢迎关注,明天见。

更多更全更热门的「笔试/面试」相关资料可访问排版精美的 合集新基地 🎉🎉

本文由 mdnice 多平台发布

这篇关于米哈游(原神)终面算法原题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/662844

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

最大公因数:欧几里得算法

简述         求两个数字 m和n 的最大公因数,假设r是m%n的余数,只要n不等于0,就一直执行 m=n,n=r 举例 以18和12为例 m n r18 % 12 = 612 % 6 = 06 0所以最大公因数为:6 代码实现 #include<iostream>using namespace std;/